SerDes Toolbox™
User's Guide

7

MATLAB&SIMULINK

R2021a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

SerDes Toolbox™ User's Guide
© COPYRIGHT 2019-2021 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

March 2019 Online only New for Version 1.0 (Release 2019a)

September 2019 Online only Revised for Version 1.1 (Release 2019b)
March 2020 Online only Revised for Version 1.2 (Release 2020a)
September 2020 Online only Revised for Version 2.0 (Release 2020b)

March 2021 Online only Revised for Version 2.1 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Design and Simulate SerDes System Topics

1]

Fundamentals of SerDes Systems 1-2
Clock and Data Recovery in SerDes System 1-3
Phase Detector i 1-3
Recovering Clock Signal i 1-6
Analog Channel Loss in SerDes System 1-14
Loss Model from Channel Loss Metric 1-14
Loss Model from Impulse Response 1-14
Introducing Cross Talk 1-14
Manage IBIS-AMI Parameters 1-16
Contents of IBISFile i i 1-16
Contents of AMIFile e 1-16
Customize AMI Parameterscui it 1-17
Debug AMIFiles in EDA 1-17
Statistical Analysis in SerDes Systems 1-19
Init Subsystem Workflow 1-20
SerDes System Using Init Subsystem 1-21
PAM4 Thresholds e 1-24
Jitter Analysis in SerDes Systems 1-25
Linux Version Compatibilities 1-28

Customize SerDes Systems Topics

2|

Customize SerDes System in MATLAB 2-2

Create and Customize IBIS-AMI Models Topics

3|

SiSoft Link 3-2

iii

iv

Contents

SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI
Software 3-3

Design and Simulate SerDes Systems Examples

4

Find Zeros, Poles, and Gains for CTLE from Transfer Function 4-2

Convert Scattering Parameter to Impulse Response for SerDes System

.. 4-6
Globally Adapt Receiver Components Using Pulse Response Metrics to
Improve SerDes Performance 4-10
Globally Adapt Receiver Components in Time Domain 4-15
Model Clock Recovery Loops in SerDes Toolbox 4-32

Customize SerDes Systems

S|

Customizing SerDes Toolbox Datapath Control Signals 5-2
Customizing Datapath Building Blocks 5-14
Implement Custom CTLE in SerDes Toolbox PassThrough Block 5-28
Step Response Based CTLE 5-37

6|

Managing AMI Parameters00uiiiiiinneennnnn. 6-2

Design IBIS-AMI Models to Support Clock Forwarding 6-17

Industry Standard IBIS-AMI Models

7

PClIe4 Transmitter/Receiver IBIS-AMI Model 7-2

PCle5 Transmitter/Receiver IBIS-AMI Model 7-15

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model 7-37

DDR5 Controller Transmitter/Receiver IBIS-AMI Model 7-49
CEI-56G-LR Transmitter/Receiver IBIS-AMI Model 7-60
USB3.1 Transmitter/Receiver IBIS-AMI Model 7-69
Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training
... 7-78
ADC IBIS-AMI Model Based on COM, 7-110

Design and Simulate SerDes System
Topics

* “Fundamentals of SerDes Systems” on page 1-2

* “Clock and Data Recovery in SerDes System” on page 1-3
* “Analog Channel Loss in SerDes System” on page 1-14

* “Manage IBIS-AMI Parameters” on page 1-16

» “Statistical Analysis in SerDes Systems” on page 1-19

» “Jitter Analysis in SerDes Systems” on page 1-25

* “Linux Version Compatibilities” on page 1-28

1 Design and Simulate SerDes System Topics

Fundamentals of SerDes Systems

1-2

Modern high-speed electronic systems are characterized by increased data speed integrated circuits
(ICs). The input/output performance remains the bottleneck that limits the overall performance of a
high-speed system. Serial data transfer is the most efficient way of communicating large data quickly
between computer chips on printed circuit boards through copper cables and through short, medium,
and long length fiber optics.

Thus, many systems now aggregate and serialize multiple input/ output (I/O) signals for transmission
across fiber and copper cables and PCBs at a higher data rate, recovering and de-serializing the
individual signals on the receiving end. These SerDes (Serializer/De-Serializer) implementations
employ additional silicon real estate to perform sophisticated equalization required for reliable signal
transmission at very high data speeds. This approach helps maximize throughput at the system level.

SerDes design is a complex, iterative process that typically starts with a baseline SerDes system that
demonstrates the feasibility of a design approach. This system also establishes budgets for the
different parts of the serial channel and associated transmitter (TX) and receiver (RX) equalization
circuitry. The data that describes the desired behavior of each of the equalization filters in both the
transmitter and the receiver is then back-annotated in the behavioral models with the correlation
with simulations or measurements. The final step is to implement the training algorithms and control
loops that will be executed by the chip during startup and from time to time when the channel needs
to be retrained.

The SerDes system is then compiled into IBIS-AMI (Input/Output Buffer Information Specifications —
Algorithmic Model Interface) models.

There are six sections of a SerDes system:

* TX equalization — This becomes the IBIS-AMI dll for the transmitter.

* TX AnalogOut — This becomes the analog model of the transmitter. It is part of the IBIS model for
TX, and is typically represented by the I-V and V-T characteristics curves in the .ibs file.

* Channel — This becomes the model of the physical channel, including the TX and RX package
models.

* RX AnalogOut — This becomes the analog model of the receiver. It is part of the IBIS model for
RX, and is typically represented by the I-V and V-T characteristics curves in the . ibs file.

* RX equalization — This becomes the IBIS-AMI dll for the receiver.

* Training algorithms and control loops — These become the on-chip microcode that is executed
inside of the chip during startup and when the channel needs to be retrained.

See Also

More About
. “Design SerDes System and Export IBIS-AMI Model”

Clock and Data Recovery in SerDes System

Clock and Data Recovery in SerDes System

In this section...

“Phase Detector” on page 1-3

“Recovering Clock Signal” on page 1-6

High-speed analog SerDes systems use clock and data recovery (CDR) circuitry to extract the proper
time to correctly sample the incoming waveform. The CDR circuitry creates a clock signal that is
aligned to the phase and to some extent the frequency of the transmitted signal. Phase tracking (first
order CDR) is usually accomplished by using a nonlinear bang-bang or Alexander phase detector that
drives a voltage-controlled oscillator (VCO). Frequency tracking (second order CDR) integrates any
remaining phase errors and compensates for gross differences between the transmitter reference
clock and the receiver reference clock. serdes.CDR and serdes.DFECDR use the first-order CDR
algorithm.

Phase Detector

The Alexander or bang-bang phase detector samples the received waveform at the edge and middle
of each symbol. The edge sample (e,) and data samples (d,.; and d,) are processed with some digital
logic to determine if the edge sample, and thus the clock phase, is early or late. The edge sample, e,
and data sample, d,, are separated by half of a symbol time.

Consider the waveform where a data transition has occurred, and both e, and d, are below the
decision threshold voltage. The binary values resolved from e, and d, match, which indicates the
clock phase is late.

1-3

1 Design and Simulate SerDes System Topics

Late Edge Sample

Waveform

15t ==me=m [ecision threshold |

0 0.5 1 15 2 25 3 35 4
Symbol Times

Similarly, when the binary values resolved from e, and d,.; match, the clock phase is early.

1-4

Clock and Data Recovery in SerDes System

Early Edge Sample

Waveform
----- Decision threshaold |

0.5r1

Voltage
=]

1.5 2 25 3 3.5 4
Symbol Times

0 0.5 1

Representing the binary output of the sampler by +1, the behavior of the phase detector for NRZ or
PAM4 modulation is summarized here:

d,.1 e, d, Action

-1 -1 1 Clock phase is early. Shift phase to the right.
1 1 -1

-1 1 1 Clock phase is late. Shift phase to the left.

1 -1 -1

-1 X -1 No action is necessary.

1 X 1

For PAM3 modulation, the symbol levels are —0.5, 0, and 0.5. The default threshold levels (th) are
+0.25. The modified truth table thus become:

d,, e, d, Action
-0.5 e, > —th 0 late
-0.5 e, < —th 0 early
-0.5 e,>0 0.5 late
-0.5 e, <0 0.5 early
0 e, > th 0.5 late

1-5

Design and Simulate SerDes System Topics

d,, e, d, Action
0 e, <th 0.5 early
0 e, > —th -0.5 early
0 e, < —th -0.5 late
0.5 e, > th 0 early
0.5 e, <th 0 late
0.5 e,>0 -0.5 early
0.5 e, <0 -0.5 late

Driving the VCO directly from the phase detector output results in excessive clock jitter. To eliminate
the jitter, the output of the phase detector is lowpass filtered by accumulating it in a vote. When the
accumulated vote exceeds a specific count threshold, the phase of the VCO is incremented or
decremented.

Jittered Received
Waveform Signal

v
=>d"

1-6

» 2-1 d"-l » dn-1
Bang-Bang Low-Pass
Data Sampler » €. Phase Detector vote [~ Loop Filter phase
control
o d
n

Edge Sampler

[
T

ﬂ/‘

SymbolTime/2

Recovering Clock Signal

Recover the clock signal from a repeating pseudorandom binary sequence (PRBS9) nonreturn to zero
(NRZ) signal. Consider the channel has 4 dB loss, the phase step size is WIS the vote count threshold

is 8, and that there are no phase or reference offsets.

The baseline behavior is shown with the eye diagram and the resulting clock probability distribution
function (PDF). The PDF is very near the center of the eye. The clock phase settles between a value of
0.5703 symbol time and 0.5781 symbol time. The dithering between the two values is a consequence
of the nonlinear bang-bang phase detector and is the source of CDR hunting jitter. To reduce the
magnitude of dithering, reduce the phase step size. To reduce the period of dithering, reduce the vote
count threshold.

Clock and Data Recovery in SerDes System

Voltage

_ Eye Diagram with Recovered Clock Distribution

0.6 T T T Channel Loss = 4 dB
phase step size = 0.0078125
Vote Count Threshold = 8
Phase Offset =0
Reference Offset = 0
06 Clock Phase vs. Time
T
E 0.58
=
3056
=
-
9054
4}
b
= 0.52
o
0.5 L . L .
0 500 1000 1500 2000 2500
#of Symbols
- Early/Late count vs. Time
P
Jr
5 o
5
a 0
(8]
L
_5 -l
L
L - - - - -
6 -10
0 0.2 0.4 0.6 0.8 1 0 500 1000 1500 2000 2500
Symbol Time ol Jymbois

The output of the phase detector is accumulated in the early/late vote count. When the count exceeds
the vote count threshold, the phase is incremented or decremented. To accelerate CDR convergence,
the count threshold starts at 2, and each time the magnitude of the vote exceeds the threshold, the
threshold is incremented until it reaches the maximum count. This figure shows the first 350 symbols
of the early/late count (blue) and the threshold (dashed red line). Internal to the CDR block, the vote
is incremented or decremented, checked against the threshold and then reset if necessary. The
external vote value shown in figure below does not touch the threshold but is evident when the vote is
reset to 0.

1 Design and Simulate SerDes System Topics

Count

1-8

Early/Late count vs. Time

50 100 150 200 250 300 350
of Symbols

To show the clock converging to a different phase, change the channel loss to 2 dB. The clock phase
now adapts to around 0.35 symbol time.

Clock and Data Recovery in SerDes System

\oltage

Eye Diagram with Recovered Clock Distribution
T T T T Channel Loss = 2 dB

phase step size = 0.0078125
Vote Count Threshold = 8
Phase Offset =0
Reference Offset= 0
0 Clock Phase vs. Time
5
Iy
Epas
]
0
E 04
2
o
E 0.35 '_I I_| —
o
0.3 . : : :
0 500 1000 1500 2000 2500
of Symbols
10 Early/Late count vs. Time
|————————————— = —
=
]
[
c D
]
_5 "
S
. ! -10
0 0.2 0.4 0.6 0.8 1 0 500 1000 1500 2000 2500

Symbol Time i of Symbols

Increasing the vote count threshold to 16 results in a larger dithering period.

1 Design and Simulate SerDes System Topics

Voltage

Eye Diagram with Recovered Clock Distribution
T T T T Channel Loss = 4 dB

phase step size = 0.0078125
Vote Count Threshold = 16
Phase Offset =0

Reference Offset = 0

Clock Phase vs. Time

=
th
=3

=
tn
[=2]

Phase (Symbol Time)
= =
in in
(2% =

=
tn

0 500 1000 1500 2000 2500

3000

3500
of Symbols
20 Early/Late count vs. Time
0 0.2 0.4 0.6 0.8 1 0 500 1000 1500 2000 2500 3000 3500
Symbol Time # of Symbols

1-10

Increasing the phase step size to 6i4 increases the dithering magnitude.

Clock and Data Recovery in SerDes System

Voltage

Eye Diagram with Recovered Clock Distribution
0.6 . .

0.4

0.2

-0.4

-0.6

Symbol Time it of Symbols

Manually shifting the data sampler location when the equalized eye does not display left/right
symmetry can maximize the eye height. For example, shift the clock phase to the right by % of a
symbol time to shift the output clock phase from 0.57 symbol time to 0.7 symbol time.

T T Channel Loss = 4 dB
phase step size = 0.015625
Vote Count Threshold = B
Phase Offset =0
Reference Offset = 0
08 Clock Phase vs. Time
e
£ 0.58
=
2056
E
=
\ B.0.54
a
@
= 0562
o
05 1 1 1 1
] 500 1000 1500 2000 2500
of Symbols
0 Early/Late count vs. Time
'_I' ________________
5(]
=
a 0
&
_5 |.
J_ L ___.
1 1 1 _1 D
] 0.2 0.4 0.6 0.8 1] 500 1000 1500 2000 2500

1-11

1 Design and Simulate SerDes System Topics

Voltage

1-12

Eye Diagram with Recovered Clock Distribution

0.6

0.4

0.2

-0.2

] 0.2 0.4 0.6 0.8
Symbol Time

Channel Loss = 4 dB

phase step size = 0.0078125
Vote Count Threshold = 8
Phase Offset =0.125
Reference Offset = 0

Clock Phase vs. Time

0.75
rn
£ 07
[
2085
S
=
ook
[14]
]
= 0.55
o
D..J I I 1 1
0 500 1000 1500 2000 2500
of Symbols
10 Early/Late count vs. Time
P —
r
507
g
a 0
]
L
=5 -l
L
L e e —_ — = -
-10
0 500 1000 1500 2000 2500

of Symbols

You can also inject a small amount of reference clock frequency offset impairment to implement a

more realistic CDR.

Clock and Data Recovery in SerDes System

Voltage

Eye Diagram with Recovered Clock Distribution
0.6 T T T T Channel Loss = 4 dB

phase step size = 0.0078125
Vote Count Threshold = 8
Phase Offset =0
Reference Offset = 0.0003
Clock Phase vs. Time
0.65
N
E
=
= 08
0
E
=
@,
o 0.55
(]
m
=
o
0.5 . . L L
0 500 1000 1500 2000 2500
#of Symbols
0 Early/Late count vs. Time
'_I' ________________
e LT
2 =
g
a D
Q
-5 L
I_L ________________
08 -10
0 0.2 0.4 0.6 0.8 1 0 500 1000 1500 2000 2500
Symbol Time #of Symbols
References

[1] Sonntag, J. L. and Stonick, J. "A Digital Clock and Data Recovery Architecture for Multi-Gigabit/s
Binary Links." IEEE Journal of Solid-State Circuits, 2006.

[2] Razavi, B. "Challenges in the design high-speed clock and data recovery circuits." IEEE
Communications Magazine, 2002.

See Also
CDR | DFECDR | serdes.CDR | serdes.DFECDR

1-13

1 Design and Simulate SerDes System Topics

Analog Channel Loss in SerDes System

1-14

In this section...

“Loss Model from Channel Loss Metric” on page 1-14
“Loss Model from Impulse Response” on page 1-14

“Introducing Cross Talk” on page 1-14

Limiting factors in high-speed data transmission includes cross talk, attenuation, and reflection noise.
The Analog Channel block and serdes.ChannellLoss System object™ parameterize a channel
model that represents a lossy transmission line typical in high-speed SerDes application. The loss
model is constructed either from a parameterized channel loss model or from an impulse response
from another source.

Loss Model from Channel Loss Metric

A discrete time, band-limited analog impulse response characterizes the serdes.ChannellLoss
System object. It represents the response of a system to an impulse response vector with an impulse
1

magnitude of JF where dt is the sample interval.

To calculate the impulse response, serdes.ChannellLoss first calculates the S-parameter
component S21 according to channel loss at frequencies ranging from 0 to f,,,, maximum frequency
of interest, where fiax = % This is done by determining the loss at the target frequency, and then
linearly extrapolating required channel length to achieve target channel loss. Then transmitter and
receiver termination S-parameter are then calculated according to the equations 93A-17 and 93A-18

from the IEEE 802.3bj-2014 specifications [1].

After calculating S21, the System object adds the negative frequency data points based on the
expected even symmetry of the real components of S21 and the odd symmetry of the imaginary
components of S21 of the frequency response. The impulse response is calculated from the inverse
Fourier transform of S21. Finally, the impulse response is resampled so that the sample interval is dft.

Loss Model from Impulse Response

To construct a loss model from an impulse response vector, input the impulse response vector from
another source. You can also define the impulse sample interval. Changing the symbol time and
number of samples per symbol changes the data rate of the SerDes system.

Introducing Cross Talk

You can include crosstalk in your simulation from the SerDes Designer app, or using the Analog
Channel block in Simulink®. If the parameterized channel loss model is used, you can specify the
strength of the near and far end crosstalk aggressors according to specification standards or you can
specify your own custom integrated crosstalk noise (ICN) levels. If a custom impulse response is
used, then up to 6 additional columns can be used to represent the crosstalk impulse response. For
more information, see Analog Channel and serdes.ChannellLoss.

Analog Channel Loss in SerDes System

References

[1] IEEE 802.3bj-2014. "IEEE Standard for Ethernet Amendment 2: Physical Layer Specifications and
Management Parameters for 100 Gb/s Operation Over Backplanes and Copper Cables."
https://standards.ieee.org/standard/802 3bj-2014.html.

See Also
Analog Channel | SerDes Designer | serdes.ChannellLoss

1-15

https://standards.ieee.org/standard/802_3bj-2014.html

1 Design and Simulate SerDes System Topics

Manage IBIS-AMI Parameters

You can manage the IBIS-AMI parameters by opening the SerDes IBIS-AMI Manager dialog box from
the Configuration block.

Contents of IBIS File

The IBIS tab in the SerDes IBIS-AMI Manager dialog box defines the content of the IBIS file. Set the
parameters used to define the IBIS file in the AnalogOut and AnalogIn blocks in the SerDes
Designer app and in the IBIS tab in the SerDes IBIS-AMI Manager.

From the transmitter side in the AnalogOut block:

* Voltage (V) — Typical value of voltage range in the IBS file.
* R (Ohms) — Slope of the typical pull-up and pull-down IV curves in the IBS file.
* C (pF) — Typical value of the C comp in the IBS file.

From the receiver side in the Analogln block:

* Voltage (V) — Typical value of voltage range in the IBS file.
* R (Ohms) — Slope of the typical ground clamp IV curve in the IBS file.
* C (pF) — Typical value of the C_comp in the IBS file.

You can only enter the typical values for these parameters. You can define the Tx and Rx corner
percentage in the Export tab of the SerDes IBIS-AMI Manager dialog box. The minimum and
maximum values are generated by subtracting or adding to the typical value its fractional corner
percentage.

The performance of an input/output (I/O) buffer is a function of process, voltage, and temperature
(PVT). There are 27 PVT corners. IBIS supports three model corners: Typ, Min, and Max. When
generating the IBIS file, the Voltage (V), R (Ohms), and C (pF) values are used for the Typ corner.

* Min refers to the slow/weak corner. It groups slow process, low voltage, and high temperature.
The voltage and resistance are decreased and the capacitance is increased for the Min corner.

» Max refers to the fast/strong corner. It groups fast process, high voltage, and low temperature.
The voltage and resistance are increased and the capacitance is decreased for the Max corner.

You can also specify the IBIS-AMI model in the Export tab of the SerDes IBIS-AMI Manager dialog
box as single I/O, redriver or retimer. Selecting these model configurations changes the contents of
the IBIS file.

» Ifyou select I/O as the model configuration, the IBIS model is reconfigured to a single model of
ModelType I/O.

» Ifyou select Retimer or Redriver as the model configuration, the components of the IBIS file is
updated to include the repeater pins.

Contents of AMI File
The AMI - Tx and AMI - Rx tabs in the SerDes IBIS-AMI Manager dialog box define the content of

the AMI file. They contain the required and commonly used reserved AMI parameters. You can also
define the model-specific parameters for the relevant blocks.

1-16

Manage IBIS-AMI Parameters

There are five Reserved Parameters included in every AMI file generated by the SerDes Toolbox:

* AMI Version — IBIS version supported by the model

* Init_ Returns_Impulse — whether the model supports statistical simulation or not

* GetWave_Exists — whether the model supports time-domain simulation or not.

* Max Init Aggressors — the number of crosstalk aggressors supported by the model
¢ Modulation — the modulation scheme of the model.

If you select Retimer or Redriver as the model configuration in the Export tab of the SerDes IBIS-
AMI Manager dialog box, an additional Reserved Parameter Repeater_ Type is added to the AMI -
Rx tab. This parameter specifies the type of the repeater.

Customize AMI Parameters

You can define and modify the parameters of individual transmitter and receiver blocks. From the
Model Specific parameters, you can add new custom AMI parameters to specific blocks. The new
AMI parameters references in the Simulink model are automatically maintained for you. For more
information, see “Managing AMI Parameters” on page 6-2.

You can also add a new tap structure to the equalizer blocks. These additional taps are included both
in the Simulink model and the exported IBIS-AMI models. The taps enable you to adjust equalization,
especially when you build your custom blocks from scratch.

You can select to hide the Model Specific AMI parameters and tap structures using the Edit...
button The parameters still work the same way in Simulink models. But they are not written in the
AMI files and does not show up in the AMI Parameters Qut string. The hidden parameters are
hard-coded to their current values in the DLL files and the end user cannot modify them.

You can also include standard-compliant transmitter and receiver jitter and noise parameters to the
Reserved Parameter section of the AMI file using the Reserved Parameters... button. The jitter
and noise parameters are only used in EDA tools. Simulink ignores these parameters.

Debug AMI Files in EDA

To enable debugging the AMI files in EDA tools, in the AMI-Tx or AMI-Rx tab, click the Reserved
Parameters... button and select DLL_ID parameter. DLL_ID is a standard IBIS-AMI parameter that
appears as a Reserved Parameter. It also enables the AMI_Debug parameter as a

Model Specific parameter.

Set Enable value to true to output debug files. You can improve performance by setting Enable
value to false and not output any debug files, but still have the option to turn on debugging in the
EDA tools if necessary. Use Start_Time to define the simulation time at which debug output
generation begins.

Note SerDes Toolbox does not support compilation of AMI Wrapper.cpp files with non-inlined S-
functions. As a result, you cannot export IBIS-AMI models with non-inlined S-functions. If you have a
Simulink Coder™ or Embedded Coder® license, you can convert your S-functions to inlined to support
IBIS-AMI model export. For more information, see “Inlining S-Functions” (Simulink Coder).

1-17

1 Design and Simulate SerDes System Topics

See Also
Configuration

More About
. “Managing AMI Parameters” on page 6-2

External Websites
. https://ibis.org

1-18

https://ibis.org

Statistical Analysis in SerDes Systems

Statistical Analysis in SerDes Systems

A SerDes system simulation involves a transmitter (Tx) and a receiver (Rx) connected by a passive
analog channel. There are two distinct phases to a SerDes system simulation: statistical analysis and
time-domain analysis. Statistical analysis (also known as analytical, linear time-invariant, or Init
analysis) is based on impulse responses enabling fast analysis and adaptation of equalization
algorithms. Time-domain analysis (also known as empirical, bit-by-bit or GetWave analysis) is a
waveform-based implementation of equalization algorithms that can optionally include nonlinear
effects.

The reference flow of statistical analysis differs from time-domain analysis. During a statistical
analysis simulation, an impulse response is generated. The impulse response represents the
combined response of the transmitter’s analog output, the channel, and the receiver’s analog front
end. The impulse response of the channel is modified by the transmitter model's statistical functions.
The modified impulse response from the transmitter output is then further modified by the receiver
model's statistical functions. The simulation is then completed using the final modified impulse
response which represents the behavior of both AMI models combined with the analog channel.

Impulse response modified
by Tx Init subsystem

Unequalized impulse
response

During a time-domain simulation, a digital stimulus waveform is passed to the transmitter model's
time-domain function. This modified time-domain waveform is then convolved with the analog
channel impulse response used in the statistical simulation. The output of this convolution is then
passed to the receiver model's time-domain function. The modified output of the receiver becomes the
simulation waveform at the receiver latch.

Digital stimulus Waveform modified Waveform modified by

Tx o Analog Channel R EEE—

waveform by transmitter analog channel

Y

Tx

Y

Analog Channel

Y

Stimulus

In SerDes Toolbox, the Init subsystem within both the Tx and Rx blocks uses an Initialize Function
Simulink block. The Initialize Function block contains a MATLAB® function to handle the statistical
analysis of an impulse response vector. The impulse response vector is generated by the Analog
Channel block.

The MATLAB code within the Init subsystems mimics the architecture of Simulink time-domain
simulation by initializing and setting up the library blocks from the SerDes Toolbox that implement
equalization algorithms. Each subsystem then processes the impulse response vector through one or
more System objects representing the corresponding blocks.

1-19

1 Design and Simulate SerDes System Topics

1-20

Additionally, an Init subsystem can adapt or optimize the equalization algorithms and then apply the
modified algorithms to the impulse response. The output of an Init subsystem is an adapted impulse
response. If the Init subsystem adapts the equalization algorithms, it can also output the modified
equalization settings as AMI parameters. These modified equalization parameters can also be passed
to the time-domain analysis as an optimal setting or to provide a starting point for faster time-domain
adaptation.

Init Subsystem Workflow

In a Simulink model of a SerDes system, there are two Init subsystems, one on the transmitter side
(Tx block) and one on the receiver side (Rx block). During statistical analysis, the impulse response of
the analog channel is first equalized by the Init subsystem inside the Tx block based on the System
object properties. The modified impulse response is then fed as an input to the Rx block. The Init
system inside the Rx block further equalizes the impulse response and produces the final output.

The System objects corresponding to the Tx and Rx blocks modify the impulse response in the same
order as they were received. If there are multiple self-adapting System objects in a Tx or Rx block,
each System object finds the best setting for the impulse response and modifies it before sending it to
the next System object.

The final equalized impulse response is used to derive the pulse response, statistical eye, and the
waveforms.

Statistical Analysis in SerDes Systems

4 Init Statistical Analysis Results — O *
File Edit View Inset Tools Desktop Window Help u
Ddde | @ 08| & E
Pulse Response Statistical Eye
_ - : - - . 0.4 : . 10"
0.6
Unequalized pa[t]
Equalized pa[t]
04} =
=
= 3
0.2} e
0 I I I I
o 1 2 3 4 5 0 20 40 60 a0 100
[s] %107 [ps]
Waveform Derived from Pulse Response
0.5 - .
1 [Unequalized p, (1) Na_me | ==
Eoualized o. it 1 |Eye Height V) 0.4330
i]
qualzed Pl 2 |[Eyewidth(ps) 914396
3 |EveArea V.. 25.8097
= 0 4 |com 217733
h 5 |VEC 0.7387
-l
|
1 IIJI
0.5 :
o 0.5 1 1.5
[s] %107

SerDes System Using Init Subsystem

To understand how an Init subsystem handles statistical analysis in a SerDes system, create a SerDes
system using the SerDes Designer App. The SerDes system contains an FFE block on the Tx side
and CTLE and DFECDR blocks on the Rx side. Use the default settings for each block.

Tx Rx
| | DFE f
.—[FFE H D’ J Channel { Dv H CTLE it
FFE AnalogOut Channel Analogin CTLE DFECDR

1-21

1 Design and Simulate SerDes System Topics

1-22

Export the SerDes system to a Simulink model. In Simulink, double-click the Tx block to open the Init
block. Then double-click the Init block to open the Block Parameters dialog box. Click the Show Init
button to open the code pertaining to the Init function of the transmitter.

The Init function first reshapes the impulse response vector of the analog channel into a 2-D matrix.
The first column in the 2-D matrix represents the analog channel impulse response (victim). The
subsequent columns (if any are present) represent the crosstalk (aggressors).

%% Impulse response formatting

% Size ImpulseOut by setting it equal to Impulseln

ImpulseOQut = Impulseln;

% Reshape ImpulselIn vector into a 2D matrix using RowSize and Aggressors called LocalImpulse

LocalImpulse = zeros(RowSize,Aggressors+l);

AggressorPosition = 1;

for RowPosition = 1:RowSize:RowSize*(Aggressors+1)
LocalImpulse(:,AggressorPosition) = ImpulseIn(RowPosition:RowSize-1+RowPosition)';
AggressorPosition = AggressorPosition+1;

end

Then the Init function initializes the System objects that represent the blocks on the Tx side and sets
up the simulation and AMI parameters and the block properties. In this SerDes system, there is only
one block on the Tx side, FFE.

% Instantiate and setup system objects
Create instance of serdes.FFE for FFE
FFEInit = serdes.FFE('WaveType', 'Impulse');
% Setup simulation parameters
FFEInit.SymbolTime = SymbolTime;
FFEInit.SampleInterval = Samplelnterval;
% Setup FFE In and InOut AMI parameters
FFEInit.Mode = FFEParameter.Mode;
FFEInit.TapWeights = FFEParameter.TapWeights;
% Setup FFE block properties
FFEInit.Normalize = true;

%
%

The channel impulse response is then processed by the System object on the Tx side.

%% Impulse response processing via system objects
% Return impulse response for serdes.FFE instance
LocalImpulse = FFEInit(LocalImpulse);

The modified impulse response in 2-D matrix form is reshaped back into an impulse response vector
and sent to the Rx side for further equalization.

%% Impulse response reformating
% Reshape LocalImpulse matrix into a vector using RowSize and Aggressors
ImpulseOut(1l:RowSize*(Aggressors+l)) = LocalImpulse;

Similarly, if you look at the Rx Init code, you can see that the Rx Init function first reshapes the output
of the Tx Init function into a 2-D matrix.

Then the Init function initializes the System objects that represent the blocks on the Rx side and sets
up the simulation and AMI parameters and the block properties. In this case, there are two blocks on
the Rx side, CTLE and DFECDR.

%% Instantiate and setup system objects
% Create instance of serdes.CTLE for CTLE

Statistical Analysis in SerDes Systems

CTLEInit = serdes.CTLE('WaveType', 'Impulse');

% Setup simulation parameters

CTLEInit.SymbolTime = SymbolTime;

CTLEInit.SampleInterval = Samplelnterval;

% Setup CTLE In and InOut AMI parameters

CTLEInit.Mode = CTLEParameter.Mode;

CTLEInit.ConfigSelect = CTLEParameter.ConfigSelect;

% Setup CTLE block properties

CTLEInit.Specification = 'DC Gain and Peaking Gain';

CTLEInit.DCGain = [0 -1 -2 -3 -4 -5 -6 -7 -8];

CTLEInit.ACGain = 0;

CTLEInit.PeakingGain = [0 1 2 3 4 5 6 7 8];

CTLEInit.PeakingFrequency = 5000000000;

CTLEINit.GPZ = [0 -23771428571 -10492857142 -13092857142;-1 -17603571428 -7914982142 -1334464285
-2 -17935714285 -6845464285 -13596428571;-3 -15321428571 -5574642857 -13848214285;...
-4 -15600000000 -4960100000 -14100000000;-5 -15878571428 -4435821428 -14351785714;...
-6 -16157142857 -3981285714 -14603571428;-7 -16435714285 -3581089285 -14855357142;...
-8 -16714285714 -3227142857 -15107142857];

% Create instance of serdes.DFECDR for DFECDR

DFECDRInit = serdes.DFECDR('WaveType', 'Impulse');

% Setup simulation parameters

DFECDRINnit.SymbolTime = SymbolTime;

DFECDRInit.SampleInterval = Samplelnterval;

DFECDRInit.Modulation = Modulation;

% Setup DFECDR In and InQut AMI parameters

DFECDRInit.ReferenceOffset = DFECDRParameter.ReferenceOffset;

DFECDRInit.PhaseOffset = DFECDRParameter.PhaseOffset;

DFECDRInit.Mode = DFECDRParameter.Mode;

DFECDRInit.TapWeights = DFECDRParameter.TapWeights;

% Setup DFECDR block properties

DFECDRInit.EqualizationGain = 9.6e-05;

DFECDRInit.EqualizationStep = 1le-06;

DFECDRInit.MinimumTap = -1;

DFECDRINnit.MaximumTap 1;

DFECDRInit.Count = 16;

DFECDRInit.ClockStep = 0.0078;

DFECDRInit.Sensitivity = 0;

The impulse response that was previously modified by the System objects on the Tx side is then
further modified by the System objects on the Rx side.

%% Impulse response processing via system objects

% Return impulse response and any Out or InOut AMI parameters for serdes.CTLE instance
[LocalImpulse, CTLEConfigSelect] = CTLEInit(LocalImpulse);

% Return impulse response and any Out or InOut AMI parameters for serdes.DFECDR instance
[LocalImpulse, DFECDRTapWeights, DFECDRPhase, ~, ~] = DFECDRInit(LocallImpulse);

The final equalized impulse response in 2-D matrix form is reshaped back into an impulse response
vector.

Each Init function also contains a section, Custom user code area, where you can customize your own
code.

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

1-23

1 Design and Simulate SerDes System Topics

1-24

For more information on how you can use the Custom user code area, see “Customizing Datapath
Building Blocks” on page 5-14 and “Implement Custom CTLE in SerDes Toolbox PassThrough Block”
on page 5-28.

The code generation of Init function (Refresh Init) can support one or multiple System objects when
using the custom PassThrough block. If multiple system objects are present, they must be in series.
The first input port must have a waveform as the input. If any waveform output is present, it must be
the first output port.

PAMA4 Thresholds

If you are using a SerDes Toolbox datapath library block, PAM4 thresholds in the Init function are
maintained for you automatically. If you are using a custom configuration using a PassThrough, the
code generation of the Init function finds the Data Store Write blocks that reference the PAM4
threshold signals (PAM4 UpperThreshold, PAM4 CenterThreshold, PAM4 LowerThreshold)
and determines connectivities. The connectivities that are supported are:

* Direct connection to System object

* Connection to System object through bus selector

* Connection to System object through Gain block

* Direct connection to Constant block

If the Init code generation cannot find a supported topology, it applies the default PAM4 thresholds.

See Also

More About

. “Customizing Datapath Building Blocks” on page 5-14

. “Implement Custom CTLE in SerDes Toolbox PassThrough Block” on page 5-28
. “Managing AMI Parameters” on page 6-2

. “Customizing SerDes Toolbox Datapath Control Signals” on page 5-2

Jitter Analysis in SerDes Systems

Jitter Analysis in SerDes Systems

Jitter is an important part of SerDes systems specification. You can include jitter parameters from the
SerDes Designer app and from the Simulink model. Including jitter impairment in your link and
equalization design helps calculate the required eye margins. You can also perform trade-off between
different equalization schemes based on total jitter contribution. You can export the jitter values to
IBIS-AMI models.

The most common types of jitter are:

Jitter Type Description

DCD (duty cycle distortion) Impairment from half and quarter rate clock
misalignment. Also known as even-odd jitter.

Duty cycle distortion is defined as the difference
in symbol duration between one symbol and the
next. The transmitter and receiver duty cycle
distortions are half of the clock duty cycle
distortion.

D] (deterministic jitter) Usually modeled as bounded uniform jitter. Also
known as uncorrelated bounded high probability
jitter.

Deterministic jitter is defined as half of the peak-
to-peak variation.

RJ (random jitter) Gaussian process that models unbounded jitter
events. Also known as uncorrelated unbounded
Gaussian jitter.

Random jitter is defined as the standard deviation
of a white Gaussian phase noise process.

S]J (sinusoidal jitter) Bounded periodic jitter that typically comes from
power supply voltage variation.

Sinusoidal jitter is defined as half of the peak-to-
peak variation of sinusoidal phase noise
amplitude.

Noise Random voltage noise. IBIS-AMI 7.0 defines
Gaussian noise and uniform noise impairments.
Also known as additive white Gaussian noise
(AWGN).

The expected simulation results vary depending on the type of jitter, injection site (transmitter or
receiver), and analysis domain (statistical or time-domain). The SerDes Designer app only supports
statistical or impulse-based analysis. To perform time-domain analysis, you must export the model to
Simulink. The different types of jitter are injected into transmitter and receiver sites according to the
IBIS-AMI specifications:

1-25

1 Design and Simulate SerDes System Topics

Channel Impulse

Impulse2pulse Tx DCD
o
Tx SJ
Statistical Eye Rx Noise
Rx Rx Clock
Jitter Recovery
Jitter
‘V‘ DCD DCD
DJ DJ
® o w
SJ SJ
Ideal Clock PDF Mean
Clock PDF

Statistical/Impulse Analysis Jitter Injection

|

=
-E=_—=

W

Jittered Statistical Eye

Ideal Clock Eye

Jittered Statistical Eye + Clock PDF

Clocked Eye

“’\‘

_ [

= |\ Q@ =
[

Clock PDF

Time Domain Simulation Jitter Injection

Tx DCD
peb
Tx DJ " DJ
stimulus
TxRJ RJ
Tx SJ SJ
CIOCK [pocuon | R G025 ot etum clock imes
times y |
Waveform —] :
’ " L1
Rx Noise — | Clock PDF :
| Tri |
A | Trigger S
| RxClock |
: Recovery ||
| Jitter :
I
Ideal Clock Eye Clocked Eye | oco !
EEEEEEEEE—— e I
— |
e —— | D !
C = I
— = I Ry :
- | SJ 1
e I
Accumulate persistent eye Accumulate persistent eye : Mean :
with ideal sampler with jittered sampler | Clock PDF I

Jittered Statistical Eye ® Clock PDF

Ideal Clock Eye

=3
—

Ideal clock eye + Clock PDF

Clocked Eye

=:

Clocked eye with jittered sampler

Transmitter jitter Convolved with eye Injected in stimulus
Receiver jitter Convolved with clock PDF Injected in clock times
(probability density function)
Clock recovery jitter Convolved with clock PDF Injected in clock times if
receiver does not return clock
times

1-26

Jitter Analysis in SerDes Systems

See Also
SerDes Designer

External Websites
. https://ibis.org/ver7.0/ver7 0.pdf

1-27

https://ibis.org/ver7.0/ver7_0.pdf

1 Design and Simulate SerDes System Topics

Linux Version Compatibilities

1-28

When generating a shared object (.so) file on Linux platform, MATLAB uses the GLIBC and GLIBCXX
(GLIBC++) library versions provided by the operating system (OS). This means that when running
these models on an equivalent OS from another vendor, you may encounter compatibility issues which
prevent the model from running.

Supported Library Versions for Different OS

Linux OS GLIBC Library Version |GLIBCXX Library GCC Library Version
Version

Debian 9 2.24-11 3.4.22 6.3

Debian 10 2.28-10 3.4.25 8.3

RedHat 6.6 2.12 3.4.13 4.4.7

RedHat 7.7 2.17 3.4.19 4.8.5

SUSE 11.4 2.11.3 — 434

SUSE 12.3 2.19 — 4.8

SUSE 12.4 2.22 — 4.8

When generating a .so file, the compiler only uses the latest GLIBC/GLIBCXX version for each
individual library function. So while the latest Debian 10 GLIBC version is 2.28, SerDes Toolbox only
uses a sub-set of the GLIBC libraries. Depending on the blocks being used, it’s possible that only
v2.12 is required.

For example, a generated .so file for a random Rx AMI model on Debian 10 requires these libraries:

0x08922974 0x00 05 GLIBCXX 3.4
* 0x06969194 0x00 04 GLIBC 2.14
* 0x09691a75 0x00 03 GLIBC 2.2.5
* 0x09691a75 0x00 02 GLIBC 2.2.5

This shared object can run on any system with GLIBC v2.14 or later and GLIBCXX v3.4 or later. This
means this shared object can run on RedHat 7.7, but not on RedHat 6.6.

Note This only applies to Linux .shared objects. Windows only requires the Universal C Runtime
libraries to be compatible with ALL GLIBC/GLIBCXX versions.

A simple workaround to generate shared objects on an earlier Linux version than what is officially
supported in MATLAB is to export the .so file on a fully supported platform, then manually run the
build on an earlier version. To do this:

* Go to the transmitter or receiver build directory, denoted by Tx_ert rtwand Rx_ert rtw,
respectively.

¢ From the command line, type the following command:

* make —f Tx.mk
* make —f Rx.mk

Linux Version Compatibilities

The generated shared objects reside one directory above the build directory (. ./Tx. so for
transmitter and . . /Rx. so for receiver.)

* Copy the .so file to the full name used by SerDes Toolbox.

Note Manual build of the shared object requires a Simulink Coder or Embedded Coder license.

For a list of supported Linux versions, see Previous Releases: System Requirements and Supported
Compilers.

See Also

External Websites
. Windows 10 Universal C Runtime

1-29

https://www.mathworks.com/support/requirements/previous-releases.html
https://www.mathworks.com/support/requirements/previous-releases.html
https://www.microsoft.com/en-us/download/details.aspx?id=48234

Customize SerDes Systems Topics

2 Customize SerDes Systems Topics

Customize SerDes System in MATLAB

Open the SerDes Designer app. In the CONFIGURATION tab of the app toolstrip, set Symbol
Time (ps) to 125 and Target BER to 1le-12.

In a new blank canvas, add an FFE block to the Tx side. Add an AGC, a CTLE and a DFECDR block to
the Rx side.

Tx Rx

B B = =

FFE AnalogQut Channel Analogin CTLE DFECDR

2-2

Select the channel block. Set Channel loss (dB) to 13.

From the EXPORT tab of the app toolstrip, select Generate MATLAB code for SerDes System. A
MATLAB script open that represents the command line interface to the SerDes system.

The MATLAB script contains the code to generate the transmitter and receiver building blocks and
analog models. It also contains the channel information and SerDes system configuration. The script
exposes every parameter that is part of the SerDes system. You can modify the parameters to further
explore the SerDes system.

For example, to see the effect of Channel loss on the SerDes system, scroll down to the section of
the MATLAB script that says % Build ChannelData. Replace the default code section with the
following code:

% Build ChannelData:

channelloss = 5;

channel = ChannelData(...
'ChannelLossdB', channelloss,
"ChannellLossFreq',5000000000, .
"ChannelDifferentialImpedance',100);

Save the change and run the script. Keep changing the value of channellLoss to see the effect of
changing channel loss.

The eye diagram when the Channel loss is set to 5 dB:

Customize SerDes System in MATLAB

Statistical Eye

0.4 T T T T T T T "II}{:

03T
4 ,.ID-“I

0.2r
4 ,.ID-E

01T
= 0r {102

011
4 '1|:|‘q

D271
4 ,.ID-E

D31
0.4 1 1 1 1 1 1 1 1["6

=20 0 20 40 60 a0 100 120 140

[ps]

The eye diagram when the Channel loss is set to 16 dB:

2-3

2 Customize SerDes Systems Topics

Statistical Eye

0.3 : 10°
0.2} 11072
0.1 107
= of 108
01F 1078
02t 10-10
0.3 : : : : : ' ' 10712
-20 0 20 40 60 80 100 120 140

[ps]

After you finalize the SerDes system with your desired Channel Loss, you can export the MATLAB
script of the SerDes system as a Simulink model. From the Simulink canvas, you can perform further
time-domain analysis, or export the system to a AMI model.

See Also
AGC | CTLE | DFECDR | FFE | SerDes Designer | serdes.ChannelLoss

2-4

Create and Customize IBIS-AMI Models
Topics

» “SiSoft Link” on page 3-2
* “SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software” on page 3-3

3 Create and Customize IBIS-AMI Models Topics

SiSoft Link

3-2

The SiSoft Link app is used to test the SerDes models developed in Simulink using SerDes Toolbox in
SiSoft Quantum Channel Designer (QCD) and Quantum Signal Integrity (QSI) software. You can
transfer the data required to reproduce a QCD or QSI test case back to Simulink® for debugging and
refinement. You need SiSoft 2018.07-SP4 or later software.

Using the SiSoft Link app, you can:

* Create a QCD project.

* Create a QSI project.

* Import QCD or QSI simulation data into Simulink.
* Update QCD or QSI with new data from Simulink.

To test the SerDes model in QSI or QCD software, first download the SerDes Toolbox Interface for
SiSoft Quantum Channel Designer and QSI Software from the Add-On Explorer. For more information
on downloading add-ons, see “Get and Manage Add-Ons”.

To access the SiSoft link app:

* From the Apps tab in the MATLAB toolstrip, click on SiSoft Link app icon.
* In the MATLAB command prompt, enter sisoftLink.

See Also

More About

. “SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software” on page 3-
3

External Websites
. https://sisoft.com

https://sisoft.com

SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

SerDes Toolbox Interface for SiSoft Quantum Channel Designer
and QSI Software

This example shows how to use SerDes Toolbox Interface for SiSoft Quantum Channel Designer and
QSI Software support package to test IBIS-AMI SerDes models developed in Simulink using SerDes
Toolbox, in SiSoft Quantum Channel Designer (QCD) or Quantum Signal Integrity (QSI) software. You
can transfer the data required to reproduce a QCD or QSI test case back to Simulink for debugging
and refinement. You need SiSoft 2018.07-SP4 or later software to run this example. You must also
have installed the SiSoft Link app provided with the support package.

SerDes Development Flow

SerDes model development begins with the SerDes Designer app. The app exports a Simulink model
with transmitter (Tx) and receiver (Rx) SerDes models and a testbench to simulate and further
develop the SerDes designs. Test the models in QCD or QSI to verify proper IBIS-AMI model
operation in a target EDA tool. Due to the high performance of IBIS-AMI executable models, run
many simulations to verify the full range of model capabilities, testing with all possible AMI
parameters and a variety of stimuli and interconnect channels. Replicate the simulation cases
warranting closer inspection in Simulink to reproduce and debug the test. Repeat this cycle as many
times as needed, updating the QCD/QSI project and Simulink model.

Create SerDes Toolbox System Model

Open the SerDes Designer app from the Apps toolstrip. Use the app to quickly prototype and
statistically analyze a SerDes system with a Tx and an Rx.

3-3

3

Create and Customize IBIS-AMI Models Topics

4\ SerDes Designer - untitled* - O *

o O e,

EEEEE. GemmeemEon -

Mew Open Sawe CONFIGLRATION BLOCKS Add Plots 05 Auto-Analyze LAYQUT
- -
- - - " = -
- i s S 4 | % Export SerDes System to Simulink .
SerDes System | = Generate MATLAB code for SerDes System
| B make IBIS-AMI model for SerDes System
Tx Rx
| | Salurat DFE/
— L -) — - L |oaliravng: |
o——| FFE | D Channe! D | AGC ==t CTLE [=miS0CS Cor |- ||
g \ L g ‘I
FFE AnalogQut Channel Analogin AGC CTLE Sathmp DFECDR
Block Parameters i | Statistical Eye |
DFECDR (DFECDR) Statistical Eye

Mame: DFECOR

PMode |adapt ~
Initial tap weights (V) [[0 0 0 0]
Minimum tap value (V) -1

Maximum tap value (V) 1

e

3-4

Add blocks from the Blocks gallery to the Tx and Rx sides. If you change the block parameters, the
statistical eye display shows the performance changes. Click on Export SerDes System to Simulink
from the Export dropdown menu to create a Simulink model for the system.

Prepare SerDes Simulink Model for QCD/QSI

The SiSoft QCD and QSI software requires IBIS models to simulate the Tx and Rx of your system. Use
the “Open SerDes IBIS-AMI Manager” button in the Configuration block to produce the IBIS files. In
the Export tab of the SerDes IBIS-AMI Manager dialog box choose a target directory and click the
Export button to create the set of IBIS files.

SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

4| SerDes IBIS-AMI Manager — O >

Export IBIS AMI-Tx AMI - Bx

IBIS Settings

Tx model name | serdes3_ix |

Fx model name | serdes3_rx |

Tx and Rx cormer percentage

AMI Model Settings - Tx AMI Model Settings - Rx
Model Type Model Type
(@) Dual model (®) Dual model
() Getwave only () GetWave only
() Init only) Init only

Bits to ignore Ijl Bits to ignore I:I

File Creation Options

Muodels to export

(#) Both Tx and Rx IBIS file
() Tx only IBIS file name (.ibs) | serdes3.ibs
() Rx only AMI file(s)
DLL file(s)
Target directory |L:‘|IBIS | Browse. . |

| Close |

Create QCD Project

e
Click the SiSoft Link ' icon from the Apps tab in the MATLAB toolstrip to open the SiSoft Link
app.

If your SerDes system model is open in Simulink, it is listed in the Simulink Model dropdown menu
in the SiSoft Link app. Click the Refresh button if your model is not listed. Set the QCD/QSI project
dropdown menu to New QCD project (create) and click Create QCD. If there are unresolved
issues regarding the selected Simulink model, Create QCD button remains disabled.

3 Create and Customize IBIS-AMI Models Topics

4 SiSoft Link — O
Simulink model [serdes3 - |
QCDIQSI project | Mew QCD project (create) L4 | | Browse...
Create QCD Import from QCD
Update 2 aramete Interface b
Ipdate = | SerDes IBIS-AMI Manager . | Sheet v
Tx Hx State ¥
Jpdate .d e Simulation b
Tx Rx
[createacD | 2 | (2]
| Close | | Refresh | |Help v |

Choose a folder in which the QCD project resides and a name for the project folder. The folder path
and project name must not have spaces. If you have not yet used SiSoft Link to create a project, the
system asks you to locate the folder containing your SiSoft software. A report window appears and
QCD opens executing a script produced by SiSoft Link. When script execution finishes, the QCD

project interface is renamed after your SerDes system model, with a single sheet sheet1.

3-6

SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

E Quantum Channel Designer 300: serdes1.qcd Project: LASISoft\SiSoftLink\test\serdes]_qcd — (] 4
File Edit Libraries Setup SimData Run Logs Reports Tools DOE Help
S —— e S e) a— P— . — e,
D@ »&aXxo - % e BIQARIA|E»BIRE #H & [
[Pre-Layout Analysis | Post-Layout Verification |
el serdes
=W (M Tx RX1
] :ﬁtl;dlfs_‘xmll W1 ;.erdgs
Dps - ps ®
=ik HNone = 0 diff_strip_1... serdes_rx
$Wi:Length
i a's i g
LD =
- T—

o

| _Eﬂsheeﬁ '

ol W

Solution Space: Sheet Options: [_] Case Mode
Transfer | Variation |
Met Variable: Type: Format: Group: . _Value 1: Value 2 il |
sheetl |RX1:DFECDR TapWeights3 [Tap AMIRange RX1Tap [0 i =l
sheet! IRX1.DFECDR.TapWeights 4 |Tap |AMI Range |RX1Tap {i [|
[lsheet1 TX1:FFE Mode integer |AMIList |<none> fixed || -
sheet! 'TX1:FFE TapWeights -1 Tap AMIRange |TX1Tap [|
sheett [TX1:FFE.TapWeights 0 Tap AMIRange [TX1Tap |1 .i =
sheetl [TX1:FFE TapWeights. 1 [Tap |AMI Range |TX1:Tap 0] | |=|
Reference Set set1 | Unset Current Set sett QCD Simulation Cnun_

The following data are copied from Simulink to QCD:

The QCD interface has the same name as the Simulink model.

QCD has one sheet, sheetl.

All IBIS files is copied into the QCD project si_1ib/ibis folder.
All Tx and Rx model parameter values from Simulink is set in the QCD solution space.
Simulation parameters are set: UI, Samples_Per Bit, and TargetBER.

Create QSI Project

To create a QSI project, set the QCD/QSI project dropdown menu to New QSI project (create)
and click the Create QSI button. The process is otherwise similar to that for QCD. Typically, IBIS-
AMI models are used in QSI for analysis of single-ended DDR4/5 DQS signals with equalization. If
that is the case, double click the Configuration block in the Simulink model to open it, and set
Signaling to Single-ended before creating the QSI project.

3 Create and Customize IBIS-AMI Models Topics

Block Parameters: Configuration >
Configuration (mask) (link)
Configure system wide settings in a SerDes Toolbox model.

Farameters

Symbol time (s) 125e-12 IE

Samples per symbol 16 -

Sample interval (s): 7.8125e-12

Target BER | 1e-06 IE

Medulation MNRZ -

Signaling Single-ended -
Differential

Analysis

Plot statistical analysis after simulation

Tools

Open SerDes IBIS-AMI Manager

Cancel Help Apply

For QSI the following simulation parameters are set:

* The QSI interface has the same name as the Simulink model.

* QSI has one sheet, sheet1.

» All IBIS files is copied into the QSI project si 1ib/ibis folder.

» All Tx and Rx model parameter values from Simulink is set in the QSI solution space.
» Simulation parameters are set: Ul, Samples_Per_Bit, and TargetBER.

* The Tx rise_time is copied from the typical corner value in the IBIS file.

+ Time_Domain_Stop is set to Ignore Bits + 20,000 UI.

* Record_Bits is set to 100 and Record_Start is set accordingly.

Import QCD or QSI Simulation Data into Simulink

After simulating in QCD or QSI, you can import data to reproduce a simulation in Simulink. You must
select the project in the QCD/QSI project dropdown menu. Click the Browse... button to choose a
desired QCD or QSI project if it is not listed in the QCD/QSI project dropdown menu.

3-8

SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

4| SiSoft Link — | oy
Simulink model | serdes3 A
QCDIQSI project |fLZ\SiSUﬂ'I.SiSDﬂLinK".tEEt'I.DCD'LEEdeEEZ r | Browse...
pdate QCD Import from QCD
+'| Update simulation parameters Interface serdes? L4
| Update .ibs file SerDes IBIS-AMI Manager .. Sheet sheet1 L
TX Rx State default L4
Simulation | god_tite hd

v'| Update simulation parameters

v |+ Update solution space v'| Update stimulus pattern
v'| Update channel impulse response
Tx Rx

| |+ Update parameters

Close Fefresh Help v

The following data are copied from QCD/QSI to Simulink, as enabled by the Import section
checkboxes:

* All Tx and Rx model parameter values from the selected simulation are set in corresponding
blocks in the Simulink model.
* Modulation, SymbolTime, and SampleInterval are set in the Configuration block.

* The time domain stimulus pattern is set in the Stimulus block, even if only statistical simulations
are run in QCD/QSI.

* The channel impulse response from QCD/QSI is set in the Analog Channel block.
A report is generated giving the details of the import.
Update QCD or QSI with New Data from Simulink

To support iterative development, selectively update a QCD or QSI project with data from Simulink.
When a QCD or QSI project path is selected in QCD/QSI project dropdown menu, the Create QCD
(or Create QSI) button becomes Update QCD (or Update QSI). The checkboxes above the button
are enabled to choose the data to be updated. If Update .ibs file is checked, the checkboxes for .ami
files and .dll/.so files are forced on, since importing the .ibis file in QCD or QSI always imports the
other files along with it.

3-9

3 Create and Customize IBIS-AMI Models Topics

4| 5iSoft Link - O X
Simulink model | serdes3 v |
QCD/QSI project | L\SiSof\SiSoftLinkitestiQCDiserdes32 v | | Browse . |
4 Overwrite multiple sweep simulations? — >
L
9 Update will replace 10 sweep simulaticns with a single simulation. rdes? - |
Procesd?
: pet1 v |
OK { | Cancel
: ance fault v |
| || Update .ami file Simulation [ch_ttte_bd_tapz v

Update .dilf so files Update simulation parameters
Update solution space Update stimulus pattern
Update channel impulse response
Tx Rx

Update parameters

| Updateacp | f 2 | [mport | [7]

| Close | | Refresh | |Help v |

Clicking Update QCD (or Update QSI) runs the QCD (or QSI) to open the project and makes the
changes. To avoid conflicts, you must close the project before updating it.

See Also
Analog Channel | Configuration | SerDes Designer | Stimulus

More About
. “SiSoft Link” on page 3-2

External Websites
* https://sisoft.com

3-10

https://sisoft.com

Designh and Simulate SerDes Systems
Examples

* “Find Zeros, Poles, and Gains for CTLE from Transfer Function” on page 4-2
* “Convert Scattering Parameter to Impulse Response for SerDes System” on page 4-6

* “Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes
Performance” on page 4-10

* “Globally Adapt Receiver Components in Time Domain” on page 4-15
* “Model Clock Recovery Loops in SerDes Toolbox” on page 4-32

4 Design and Simulate SerDes Systems Examples

Find Zeros, Poles, and Gains for CTLE from Transfer Function

4-2

This example shows how to configure the Specification parameter GPZ Matrix of a CTLE in the
SerDes Designer app to use zeros, poles, and gains output by the zpk function, given poles and
residues output by the rational function. You can reformat the set of zeros, poles, and gains output
by the zpk function to use as a GPZ matrix in a CTLE block.

Import Transfer Function

Import a .csv file containing a transfer function using the readmatrix function.

ctle transfunc = readmatrix('ctle transfer function.csv', 'Range','A7:E775');
rawfreq = ctle transfunc(:,1);
ri = ctle transfunc(:,4:end);

Trim Data to a Specific Cutoff Frequency

As an option, it is possible to truncate the data set from the transfer function used by the Fit. For
example you may choose a cutoff frequency of 13 GHz.

fcutoff = 13e9;
ndx = rawfreq<fcutoff;

Save Un-truncated Data for Fit Comparison Using Overlay Plot

As an option, the original dataset my be saved for later comparison to the Fit output by the rational
function.

rawdata = complex(ri(:,1),ri(:,2));
Convert Transfer Function to Complex Form

To prepare data for use by the rational function, convert the real numbers from the transfer
function to complex numbers using the complex function.

data
freq

complex(ri(ndx,1),ri(ndx,2));
rawfreq(ndx);

Find Rational of Transfer Function

You can use the rational function to find the best fit to the transfer function. The rational
function performs iterations to identify a fit with the lowest error. It is important to set the argument
TendsToZero to true to add a pole so that the fit tends to zero as S approaches infinity. This meets
the requirement to have one more pole than the number of zeros in the GPZ matrix.

fit = rational(freq,data, 'Tolerance',-40, 'TendsToZero',true, 'MaxPoles',8, 'Display','on');

No reduction possible.

init: np=0 errdbAAA=0 errdb=0 (np=0)

np=0 errdbAAA=-3.33309 errdb=0 (np=0)

np=2 errdbAAA=-49.9298 errdb=-50.1853 (np=2)
Achieved specified tolerance.

final: np=2 errdb=-50.1853

Convert to Zeros, Poles, Gains from Poles and Residues

The rational function returns poles and residues, but you need to convert these into zeros, poles
and gains for a CTLE block using function zpk.

Find Zeros, Poles, and Gains for CTLE from Transfer Function

[Z;pv~:ngain]=Zpk(fi‘t) H
Create a GPZ Matrix for CTLE Block from Zeros, Poles, Gains

The zeros, poles and gains output by zpk need to be formatted as a GPZ Matrix for use in a CTLE
block. The CTLE can be configured to use Specification parameter GPZ Matrix where the units for
gains, poles and zeros are dB, Hz, and Hz, respectively. The output of function zpk must be
reformatted for these units for use as a GPZ Matrix. Note: it is good practice to initialize the GPZ
Matrix in case the input data set is changed between one analysis to another.

gpz = zeros(1l,length(p)*2);
gpz(1,1) = 20*1oglo(abs(dcgain));
gpz(1,2:2:1length(p)*2) = p/(2*pi);
gpz(1,3:2:1length(z)*2+1) = z/(2*pi);
Plot the Overlay of Fit vs. Data

The serdes.CTLE block can be used to generate an overlay plot of the fit results in comparison
against the input data set.

myctle = serdes.CTLE('GPZ',gpz, 'SymbolTime',40e-12, 'Specification', 'GPZ Matrix');

[f,H] = plot(myctle);
figure(3), semilogx(f*le-9,db(H), rawfreq*le-9,db(rawdata))
grid on

xlabel('GHz"),ylabel('dB")
legend('Fit', 'Data')

Fit
Data

16
1072 107" 10° 107 102
GH=z

4-3

4

Design and Simulate SerDes Systems Examples

Configure CTLE Block in SerDes Designer

Launch the SerDes Designer app. Place a CTLE block after the analog model of the receiver. Select
the CTLE and from the Block Parameters pane, set the Specification parameter to GPZ Matrix.
Optionally, you can either type in the name of the GPZ Matrix variable (in this example, "gpz"), or
copy the values from the GPZ Matrix cell chart and paste it to the Gain pole zero matrix

parameter.
4\ SerDes Designer - untitled* - O X
o I
of O [/ SymbolTime (ps) 100 Modulation | NRZ - REC FFE el Y4
16 ~ =~ ’
Me Epmn S | OIS I [e e AGC FFE Delete Add Plots LAYOUT | Export
- Target BER | 1e-06 £ g |Uiterentia - Auto-Analyze -
FILE CONFIGURATION BLOCKS AMNALYSIS v EXPORT
| SerDes System
Tx Rx
.—{ D }~~{ Channel }~~{ D }> CTLE %
AnalogOut Channel Analogin CTLE

Block Parameters | Plots |
CTLE (CTLE)

Name: |CTLE
Mode |adapt ~
Specification |GPZ Matrix ~

Gain pole zero matrix |gpz

4-4

Correlate Pulse Response in SerDes Designer to IBIS-AMI Simulation

In the SerDes Designer app, plot the CTLE Transfer Function and Pulse Response from the Add Plots
button. You can move the panes to show two plots by clicking and dragging each pane within the
SerDes Designer window.

Find Zeros, Poles, and Gains for CTLE from Transfer Function

SERDES DESIGMNER

= O

4\ SerDes Designer - untitled*

Symbol Time (ps) | 100

Samples per Symbol |16 -

Medulation | NRZ =

AGC FFE

O

X
Y - %@@@\@@é

Analyze

@ B

¥

MNew Open Save S - - AGC FFE Delete Add Plots LAYOUT | Export
- Target BER | 1e-06 Signaling |Differential _ ~ - Auto-Analyze -
- —
FILE COMNFIGURATION BLOCKS AMALYSIS EXPORT -
| Block Parameters | | SerDes System
CTLE (CTLE)
Name: |CTLE
Tx Rx
Mode |adapt ~
Specification | GPZ Matrix ~
D Channel D CTLE
Gain pole zero matrix |gpz
AnalogOut Channel Analogin CTLE
[Pulse Response | | CTLE Transfer Function: CTLE |

Pulse Response

CTLE 0 SerDes CTLE Transfer Function Family
T T T
- /II‘ //'{---_ %H\.‘
| Equalized g 5[~]
0.5 |'I |I - ® -
0.4 1 or s T .]
= || | 107 108 10° 10 10!
™
>03 IN I'. e
Il
0.2 | IR 0.5 T ——— T
| R
I | Rili——— - =]
0.1 [5 0 L
0) = B.osf o |
Y /"- 1 | | 1
22 24 26 28 3 32 107 10% 10* 10" 10"
Hz
[s] %102

Then click the Export > Make IBIS AMI Model for SerDes System button. The IBIS-AMI model
may be loaded into an appropriate EDA tool to plot the Pulse Response from the model. For

correlation purposes, you can compare the plots for Pulse Response from the SerDes Designer app
and the EDA tool.

See Also
CTLE | SerDes Designer | rational | serdes.CTLE

More About

. “Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes
Performance” on page 4-10

4 Design and Simulate SerDes Systems Examples

Convert Scattering Parameter to Impulse Response for SerDes
System

4-6

This example shows how to find an Impulse Response by combining a Scattering-Parameter (S-
Parameter) model of a baseband communication channel along with a transmitter and receiver
represented by their analog characteristic impedance values. You will see how to find an Impulse
Response of this network using the class SParameterChannel in SerDes Toolbox™, which also uses
some supporting functions from RF Toolbox™ such as rational (RF Toolbox) and impulse (RF
Toolbox).

Configure Variables

The S-Parameter file representing the baseband channel should be a Touchstone 1.0 (.sNp) file.
Typically these are extracted from a software EDA tool or laboratory VNA, each with a port reference
impedance of 50-Ohms. The following properties are the main settings you would use to extract an
impulse response of the concatenated Transmitter-Channel-Receiver network:

SParameterChannel Properties:

* FileName - Filename of the S-Parameter to be imported.

* PortOrder - Port order for the S-Parameter.

* MaxNumberOfPoles - Maximum number of poles to use for a fit.

* ErrorTolerance - Desired error tolerance in dB for rational model fit.
* Samplelnterval - Sample interval in units of seconds.

* TxAmplitude - Stimulus amplitude of the Tx output rising waveform.
* TxRiseTime - The 20-80% rise time of the Tx stimulus waveform.

You can find additional parameters explained in the documentation. Note: defaults are provided for
all settings if no entries are made.

Create the S-Parameter Channel Object:

Create an SParameterChannel object from a Touchstone S-Parameter data file. Understanding S-
Parameters is beyond the scope of this example, but it is important to remember the bandwidth of the
S-Parameter should be sufficient to model your channel.

TODO: RJA recommends explicitly setting the critical variables also, such as sample interval. Also the
default.s4p should be swapped out for one of the .sNp files in the release that allow for 14GHz
Nyquist... because default.s4p strictly speaking does not fit with the default properties in the class.

obj = SParameterChannel('FileName', 'wl stimulus 21dB 14GHz 1pOV 40ps TxRx50rlpF.s4p');

Compare Fit Results to Original Data

You can compare the original s-parameter data and fit differential-mode frequency response by
plotting the magnitude and phase of the original transfer function and the resulting output of the
rational function. This can be done using the plotRational method.

plotRational(obj);

Convert Scattering Parameter to Impulse Response for SerDes System

Rational Fitting with 118 poles

U T T T

Original data
= = = Firesult 4

Pl
(=]
T

- = E e e - - - .

Magnitude (dB)
£
L=

&0k e 4
'BD i i i i i i i i
0 10 20 30 40 50 &0 70 80 80
Frequency (GHz)
4
U I 1|:I T T T T T T T T
Original data
— = = = Fit result
g-1r 1
=
O
28]
E -2 o e mm mm e mm mm mm mm mm o= omm =m0 N
o
_3 i i i i i i i i
1] 10 20 30 40 50 &0 70 80 80

Frequency (GHz)

Extract the Impulse and Time Vectors:

You can extract the Impulse and Time Vectors from the object created by the SParameterChannel
class.

impulseResponse = obj.ImpulseResponse;
t = obj.t;

Visualize a Plot of the Impulse Response:
You can plot the impulse response in MATLAB.

plot(t,impulseResponse);

4 Design and Simulate SerDes Systems Examples

Rational Fitting with 118 poles

U T T T

Original data
= = = i result 4

Pl
(=]
T

- = E e e - - - .

Magnitude (dB)
£
L=

&0k e 4
'BU i i i i i i i i
0o 10 20 30 40 50 &0 7o B0 a0
Frequency (GHz)
ko]
1':' : 1I:I T T T T T T T T T
5 - -
U i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1

<107

Use Impulse Response for Channel Model in Serdes Designer

You can use the impulse response of the baseband channel model within SerDes Designer by
selecting "Impulse response” for channel model and enter the base workspace variable
impulseResponse that you created above.

Use Impulse Response for Channel Model in Serdes Designer

You can use the impulse response of the baseband channel model within Serdes Designer by selecting
"Impulse response" for channel model and enter the base workspace variable impulseResponse.

4-8

Convert Scattering Parameter to Impulse Response for SerDes System

| Block Parameters .

Impulse Response 0

«10? Impulse Response
Channel model | Impulse response 10 T T T T T T T T T
Impulse response |impulseResponse Unequalized
Equalized
Impulse sample interval |6.25e-12 2T
Analogin and AnalogOut are ignored for analysis
8F N
when channel model is set to impulse response
—— n 7 F -
| Statistical Eye |
Statistical Eye
0.5 6 1
e ——
(— | ———————_
—. —
\{ > 5f 1
= o[-3
) — d 1
x - 4
| e —] 3t 1
—
0.5
0 20 40 60 80 100 ol | |
[ps]
|. Report | ||
MName | Data | 1r | i
1 |Eve Height (V) 0.30627 \
2 |Eve Width (ps) 72789 0 I S L L L L L L L
3 |[Eye Area (Veps) 147785 2 3 4 5 6 7 8 9 10
4 |com 50872 [s] <1072
5 |WEC 5.0541

SerDes Designer

4-9

4 Design and Simulate SerDes Systems Examples

Globally Adapt Receiver Components Using Pulse Response
Metrics to Improve SerDes Performance

4-10

This example shows how to perform optimization of a set of receiver components as a system using
function optPulseMetric to calculate metrics such as eye height, width and channel operating
margin (COM) estimate from a pulse response at a target bit error rate (BER) to evaluate the optimal
performance of a particular configuration. The adaptation is performed as statistical analysis (Init),
then the optimized result is passed to time-domain (GetWave).

Initialize SerDes System with Multiple CTLEs and DFECDR

This example uses the SerDes Designer model rx ctle adapt dfe train as a starting point. Type
the following command in the MATLAB® command window to open the model:

>> serdesDesigner('rx _ctle adapt dfe train.mat')

Tx Rx
| | DFE/
o—‘ D Channel | CTLE CTLE CDR
AnalogOut Channel Analogln CTLE Lo... CTLE_Hig... DFECDR

This project contains a receiver section with two CTLE blocks followed by a DFECDR block. In their
default configuration, these blocks optimize individually. The goal of this example is to optimize the
blocks as a system.

For the CTLE LowFreq block, the Peaking frequency (GHz) is set to [10 11 12 13 14 15 16],
the DC gain (dB) issetto [0 0 @ 0 0 O O], and the Peaking gain (dB) is set to 0. All other
parameters are kept at their default values.

For the CTLE HighFreq block, the Specification is set to DC Gain and AC Gain, the Peaking
frequency (GHz) is set to 14, the DC gain (dB) is set to 0, and the AC gain (dB) issetto [0 1 2
34567 89 10 11 12 13 14 15]. All other parameters are kept at their default values.

For the DFECDR block, the Initial tap weights (V) issetto [0 0 0 0 0 0 0 0 O O]. All other
parameters are kept at their default values.

Export the SerDes system to a Simulink® model.
Add Code to Optimize CTLEs and DFECDR as System

Double click the Init subsystem inside the Rx block and click on the Show Init button. You can place
code in the Custom user code area from the following steps and save the model. The code is broken
down below in several subsections for easy comprehension.

Note: To complete the example, you can also reference the attached file

‘rx_init custom user code.m' and place in the Custom user code area inside the Init
subsystem. For more information about Init subsystem, see “Statistical Analysis in SerDes Systems”
on page 1-19.

Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes Performance

Initialize Receiver Parameters

The first section of the Custom user code area checks if both CTLEs are in adapt mode and
instantiating variables to hold temporary values and the best configuration metrics.

% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
If both CTLEs are in Adapt mode, use global adaptation

if CTLE LowFregParameter.Mode == 2 && CTLE HighFreqParameter.Mode ==

CTLE LowFregInitBestConfig = 0;

CTLE HighFregInitBestConfig = 0;

bestMetric = 0;

SPB = SymbolTime/SampleInterval;

[)
“
[)

©

Sweep CTLE Parameters

The example code sets the CTLE.Mode parameter from adapt to fixed to allow algorithmic control
of the values for each block. In this case the values are directly swept and the blocks are called to
process the impulse response.

CTLE LowFreqInit.Mode = 1;

CTLE_HighFregInit.Mode = 1;

for CTLE LowFreqInitSweep = 0:1:6

for CTLE _HighFreqInitSweep = 0:1:15

% Set current sweep configs on each CTLE
CTLE LowFreqInit.ConfigSelect = CTLE LowFreqInitSweep;
CTLE_HighFreqInit.ConfigSelect = CTLE HighFreqInitSweep;
% Call CTLEs and DFE
[sweepImpulse, ~] CTLE LowFreqInit(LocalImpulse);
[sweepImpulse, ~] CTLE _HighFreqInit(sweepImpulse);
[sweepImpulse, ~, ~, ~, ~] = DFECDRInit(sweepImpulse);

1

Convert Impulse Response to Pulse Response and Evaluate with optPulseMetric

Convert the impulse response to a pulse response for evaluation by the function optPulseMetric. A
pulse response lends itself to metrics-based evaluation more readily than an impulse response. The
optPulseMetric function is used to optimize the SerDes system as a whole. Many metrics are
reported by this function and you can use an algorithm to evaluate multiple receiver components
together as a system.

Note: The function optPulseMetric is designed to analyze a single response, not a matrix of
responses, so you can use sweepPulse(:,1) to trim the main response from an impulse matrix or
pulse matrix.

% Convert impulse after DFE to pulse then calculate eye metrics
sweepPulse = impulse2pulse(sweepImpulse,SPB,SampleInterval);
eyeMetric = optPulseMetric(sweepPulse(:,1),SPB,Samplelnterval, le-6);
% Select eye metric to evaluate results

sweepMetric = eyeMetric.maxMeanEyeHeight;

% sweepMetric = eyeMetric.maxEyeHeight;

% sweepMetric = eyeMetric.maxCOM;

% sweepMetric = eyeMetric.centerMeanEyeHeight;
% sweepMetric = eyeMetric.centerEyeHeight;

% sweepMetric = eyeMetric.centerCOM;

4-11

4 Design and Simulate SerDes Systems Examples

4-12

Evaluate optPulseMetric Results

Save the CTLE configurations based on comparison to previous results. The final best configurations
are saved on the blocks for a final statistical (Init) analysis and then passed to time-domain (GetWave)
simulation.

% If current sweep metric is better than previous, save the CTLE configs
if sweepMetric > bestMetric
bestMetric = sweepMetric;
CTLE LowFregInitBestConfig = CTLE LowFreqInitSweep;
CTLE HighFreqgInitBestConfig = CTLE HighFreqInitSweep;
end
end
end
% Set CTLEs to best configs from sweep
CTLE LowFregInit.ConfigSelect = CTLE LowFreqInitBestConfig;
CTLE HighFregInit.ConfigSelect = CTLE HighFreqInitBestConfig;
end
% END: Custom user code area (retained when 'Refresh Init' button is pressed)

Run SerDes System

Run the SerDes system and observe the optimizing behavior. You can try changing which metric is
evaluated to perform different optimizations.

Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes Performance

4 Init Statistical Analysis Results — O ot
Eile Edit Niew Insert JTools Desktop Window Help u
o i
g de |2 (0| & E
Pulse Response Statistical Eye a
15 10
Unequalized pU{t]
. Equalized p[t) o5 Z
s
0.5 S
10710 o
0
— g8
0 1 2 a 0 10 20 a0 40
(=] x1078 [ps]
Watqeform Derived from Pulse Response
I Unequalized p, 1] Mame Data
) Eve Height U... 0.34 A
05 ‘ Equalized p(t) 1 _Fyefed
2 |Eve Height C... 0.34
= 0 3 |Ewe HeightL... 0.34
- F 4 |EyeWidth U... 11.58
05 5 |Eye Width C... 12.88
& |Eye Width Lo... 1159 ¥
£ >

4-13

4 Design and Simulate SerDes Systems Examples

4. Eye Diagram

Eile Tools VWiew Help

@- 5 OP® - a5 B -l E

il
'[E
=1

=
=
™

o
F

Ready T=7.14e-08

See Also
CTLE | DFECDR | optPulseMetric

More About

. “Find Zeros, Poles, and Gains for CTLE from Transfer Function” on page 4-2

. “Implement Custom CTLE in SerDes Toolbox PassThrough Block” on page 5-28
. “Statistical Analysis in SerDes Systems” on page 1-19

4-14

Globally Adapt Receiver Components in Time Domain

Globally Adapt Receiver Components in Time Domain

This example shows how to perform optimization of a set of receiver components as a system during
Time Domain (GetWave) Simulation. You will see how to setup a CTLE and a DFECDR Block so their

settings adapt together globally during simulation. This is a follow on to the example "Globally Adapt
Receiver Components Using Pulse Response Metrics to Improve SerDes Performance."

Receiver Component Global Adapatation Overview:

The receiver components for CTLE and DFECDR can work together to perform adaptation in Time
Domain simulation. Normally, they operate independently as follows:
* CTLE adapts in Statistical (Init), then sets to this value when Time Domain simulation begins

+ DFECDR adapts in Statistical (Init), then sets to these tap values for Time Domain and the Block
proceeds to continuously train tap values

You can follow these steps to customize the CTLE and DFECDR to share signals within the RX system
to adapt together globally during Time Domain simulation:

Part 1: Determine A Method for Optimizing RX Waveform vs. Equalization

You will see how equalization can affect RX waveforms to be either over-equalized, under-equalized,
or critically-equalized (e.g. similar to how filter responses can be defined as over-damped, under-
damped, or critically-damped).

Note: The concept of data words (3 symbols per word) from Communications Theory is used in this
example.

Low Frequency (LF) and a High Frequency (HF) data word are defined for this example as follows:

* A LF word retains same logical value across 3 symbol UI (e.g. 111 or 000) to represent non-
changing bit-to-bit values within a word.

* A HF word changes during the 3 symbol UI (e.g. 101 or 010) to represent changing bit-to-bit
values within a word.

Note: a CTLE block optimizes for inner-eye (HF content only).

Part 2: Customize Simulink Blocks in Receiver Section

* Disable CTLE internal adaptation by connecting output to a terminator
* Change CTLE input to use a signal from the DFECDR (which allows adaptation together globally)

* Customize the DFECDR by creating a MATLAB function block that evaluates Eye metrics,
depending on Interior bus and CTLE parameters, then outputs a value to use for CTLE
configuration.

Part 3: Implement Custom MATLAB Function to Adapt Equalization during Time Domain
Simulation

* In the DFECDR, code the MATLAB function to operate on input signals during UI boundaries
rather than on each sample interval

* Add conditional statements to compare Eye metrics between Low Frequency (LF) data words and
High Frequency (HF) data words, to determine next best equalization value.

4-15

4 Design and Simulate SerDes Systems Examples

* The equalization value output by the MATLAB function is a Signal in Simulink. This means the
CTLE block will use this as its input- so every time it changes, the RX waveform will be equalized
with this new value during Time Domain simulation.

Note: Blocks within the RX system can share signals. This is also true within the TX system. However,
no signals can be shared between RX and TX systems.

Part 1: Determine a Method for Optimizing Receiver Waveform vs. Equalization
Initialize SerDes System with CTLE and DFECDR in the Receiver

Open the system by typing serdesDesigner(‘TDadapt.mat’). You will see a system with a basic TX,
100-ohm channel with a loss of 16dB at 5GHz, and an RX containing a CTLE followed by a DFECDR.
In this example, the CTLE is customized to use fixed mode, DC Gain and Peaking Gain as the
specification, DC gain of 0 to -15 dB, and Peaking gain of 0 to +15dB.

Tx Rx
DFE/
.—[D J~~[Char‘nelJ~ [>. CTLE R
AnalogQut Channel Analogln CTLE DFECDR

You can click on the CTLE and set the mode to "fixed."

Block Parameters

CTLE (CTLE)

Mame: |CTLE
Mode |fixed e
Configuration =elect |0 w
Specification |DC Gain and Peaking Gain b

Peaking frequency (GHz)} |5
DC gain (dB) |[0-1-2-34-56-F-85-9-10-11-12-13-14-13]

Peaking gain (dB) [012345672891011 1213 14 15)

Then you can cycle through different values for Configuration Select for the CTLE and observe the
effect of different equalization values on the receiver eye diagram:

4-16

Globally Adapt Receiver Components in Time Domain

Statistical Eye £, 4:| {':I & ;1 -ﬁ

0 10 20 0 40 50 60 0 80 80 100
[ps]

Figure: Under-equalized RX waveform: Amplitude is smaller for the HF word (101 or 010) vs LF word
(000 or 111).

Statistical Eye

1] 10 20 30 40 50 1] Fii] a0 80 100

Figure: Over-equalized RX waveform: Amplitude is smaller for the HF word (101 or 010) vs LF word
(000 or 111).

4-17

4 Design and Simulate SerDes Systems Examples

Statistical Eye =M & Q0

0 10 20 30 40 50 &0 70 80 80 100
[ps]

Figure: Critically-equalized signal: The amplitudes of the LF and HF signals are equal.

You can develop an algorithm to optimize the receiver signal by using the concept of Equalization. For
example, an RX signal can be considered as being over-equalized, under-equalized, or critically-
equalized:

Part 2: Customize Simulink Blocks in Receiver System

Export the system to Simulink.

Configuration

P Waveln Tx WaveOut 4JWaveln Analog Channel WaveOut P Waveln Rx WaveOut >

]

Eye Diagram

Inside the Receiver section, you can modify the CTLE and DFECDR to share values using Signals in
order to enable global adaptation during Time Domain simulation.

4-18

Globally Adapt Receiver Components in Time Domain

| SerDes IBIS-AMI Manager '

Waveln

CTLE WaveOQut

Waveln

DFECDR WaveOut

WaveOut

¥

Waveln
CTLE DFECDR
Modify the CTLE
You can look under the CTLE mask (CTRL-U), then change the ConfigSelect output to a Terminator
instead of a DataStoreWrite. By placing a Terminator at the ConfigSelect output, the CTLE is no
longer in feedback mode, and any other block in the RX system can take control of this CTLE by
writing to its ConfigSelect input signal.
1} | In
] Out
CTLEParametar Mode I Mode CTLE
CTLEMode
ConfigSelect
CTLESignal ConfigSelect | ConfigSelact
CTLEConfigSelect
CTLE

You will change the CTLE.ConfigSelect output to connect to a terminator:

¥

G

In

CTLEParameter. Mode

¥

CTLEMode

CTLESignal ConfigSalact

¥

CTLEConfigSelect

Mode

CanfigSelact

CTLE

Ot

ConfigSelect

L >

Tarminator

CTLE

Crut
CTLESignal.ConfigSealect
CTLEConfigSelect1
1]
Crut

4-19

4 Design and Simulate SerDes Systems Examples

Add CTLE Adaptation to the DFECDR

You can now modify the DFECDR to control the value of ConfigSelect input used by the CTLE during
Time Domain simulation. This can be accomplished by adding a MATLAB function that uses the
following parameters to evaluate a CTLE configuration to adapt to the next best equalization value:

* Mode

* Configln

* symbolRecovered
* voltageSample

Next, you will see how to change the DFECDR to add this MATLAB function.

(1 } P In Out »{ 1)
In Qut
l DFECDR1Parameter. Mode |—b Made TapWeights —>| DFECDR1Signal. TapWeights I
DFECDR1Mode DFECDR1TapWeights1
‘ DFECDR1Signal. TapWeights |—> TapWeights DFE/CDR Phase —>| DFECDR1Signal.Phase |
DFECDR1TapWeights DFECDR1Phase
lDFECDR‘IParameter.RelerenceOﬁsel|—b ReferenceOffsat ClkAMI —>| clockbus |
DFECDR1ReferenceOffset
‘ DFECDR1Parameter.PhaseOffset |—> PhaseOffset Interior PAM4_UpperThreshaold |
<PAMAThreshold= —
DFECDR1PhaseOffset DFECDR PAM4_UpperThreshold

0 4>| PAM4_CenterThreshold |

PAM4_CenterThreshold

>—>| PAM4._LowerThreshold |

PAM4_LowerThreshold

You will see a bus selector at the output port Interior). Double click to open its Block Parameters
menu and make the following changes:

4-20

Globally Adapt Receiver Components in Time Domain

Block Parameters: Bus Selector
BusSelector

This block accepts a bus as input which can be created from a Bus Creator, Bus Selector or a block that defines its output
using a bus object. The left listbox shows the signals in the input bus. Use the Select button to select the output signals.
The right listbox shows the selections. Use the Up, Down, or Remove button to reorder the selections. Check 'Output as

virtual bus’ to output a single bus signal.

Parameters

Signals in the bus
clockPhase
symbolRecoverad
voltageSample
PAMAThreshold
CDRedgeVoltage
CDRecounter
CDRearlylLateCount
PAMASymbolMiddleVoltage
PAMASymbolQuterVoltage
EyeHeightAbsAve

Find
Select>>

Refresh

Selected signals

Up

PAMAThreshold
symbolRecovered
voltageSample

Down

Remove

[Output as virtual bus

Cancel Help

Apply

pWeights

Phase

Clianl

Interiar

= il (1 1

Click on signal symbolRecovered and click button marked “Select>>" and repeat this for

voltageSample. Then, you need to change the configuration of symbolRecovered and

voltageSample from "signal" to "parameter." You can do this from the right-click menu for each one.

Add a MATLAB function to the Simulink canvas. Change the label to "ctleTimeDomainAdapt." You can
get Simulink to automatically generate the ports by defining the function statement line of code as

follows:

Note: You can either use the code snippets concatenated as they are explained in this example, or
you can use the attached MATLAB function "ctleTimeDomainAdapt.m" for reference.

function config = fcn(mode, configIn, symbolRecovered, voltageSample, SymbolTime, SampleInterval

Alternatively you can use the canvas tools in Simulink to create the ports as follows:

Inputs:
* mode
* configln

* symbolRecovered
* voltageSample

* Note: symbolRecovered and voltageSample are optional outputs of the DFECDR block (and are
documented within the MATLAB code for the CDR)

Output (same as function name):

4-21

4 Design and Simulate SerDes Systems Examples

* config

Create a constant block and configure its Element Assignment to CTLESignal.ConfigSelect. Then

connect it to the CTLE input port.

Note: you can add a Scope to observe the adapting values of CTLESignal.ConfigSelect during

simulation
@ Block Parameters: Data Store Write X
DataStoreWrite
Write values to the specified data store. Use the 'Element Assignment' tab to assign values to specific elements. If
you do not select any elements, the write operation is performed on the entire data store.
Parameters Element Assignment
Signals in the bus Assigned element(s) Up
» CTLESignal iCTLESignal.ConfigSelect S
Refresh Remove
Specify element(s) to assign:
| Select>>
Cancel || Hep || Apply

9

When you are finished connecting the signals, the DFECDR will appear as follows:

4-22

Globally Adapt Receiver Components in Time Domain

n — ~ PAMA Threshold> F B, rThresho
’—D{Pr Offset Interi 4>< PAM4_UpperThreshokd
aseCfize ntenar bolecovered= | <PANAThreshald> —_peerThres I

.

=vollagedample> PAk4_UpperThreshold

D—D{ PAM4_CenterThreshold I

FPAM4_CenterThreshold

4>[>—>1 PAM4_LowerThreshokd I

Paki4_| owerThreshold

DFECDR

(CTLESignal.ConfigSelect configin

symbolRecoverad cleTimeDomainAdapt

voltageSample » :I

Part 3: Implement Algorithm to Adapt Equalization during Time Domain Simulation

config ol CTLESignal.ConfigSalect

[erecssma Contosaect———»

You can edit the file "ctleTimeDomainAdapt.m" attached to this example as a starting point for your
adaptation algorithm. This example makes use of Persistent variables to keep track of values each
time the MATLAB function is called. As a starting point, you will evaluate if the variables are non-zero
(e.g. using function isempty()), so that when the first time the function is called, they can be
initialized. After this point, their values will be configured by the CTLE and DFECDR blocks working
together.

persistent sps sampleCounter symbolCounter

persistent internalConfig updateConfig symbols voltages

persistent lowFreqCount highFreqCount lowFreqVoltage highFreqVoltage
persistent preventToggle toggling

if isempty(sps)
sps = SymbolTime/Samplelnterval;
sampleCounter = 0; % Total samples
symbolCounter = 0; % Total symbols
internalConfig = configIn; % Take config from Init and set for initial config
%internalConfig = 0; % Use this instead to ignore value from Init
updateConfig = false;
symbols = [0 0 0]; % Symbol history (3)
voltages = [0 0 O]; % Voltage at each symbol (3)
lowFreqCount = 0; % Low frequency event count
highFreqCount = 0; % High frequency event count
lowFregVoltage = 0; % Voltage sum at low frequency events
highFreqVoltage = 0; % Voltage sum at high frequency events
preventToggle = [0 0 O O]; % Toggle tracker; last 4 config updates -1/+1
toggling = false; % Toggle detected flag

end

Note: When a variable is Persistent, that variable retains its value. Otherwise they are instantiated as
undefined for each time a MATLAB function is called.

Implement Watchdogs such as a Toggle Detector

You can implement many types of watchdog testing, but this example implements a toggle detector. If
the CTLE is at a given value and begins to increment or decrement by 1 (e.g. 4-5, 5-4, 4-5) from word

4-23

4 Design and Simulate SerDes Systems Examples

4-24

to word, the program will test for a toggle condition by detecting 3 repetitions. If true, it exits the
loop, thus the CTLE retains its trained optimal value.

Note: You can see an example implementation of such an algorithm in the attached file.
if mode == 2 && ~toggling
Understanding Data Slicers

You can use the signals symbolRecovered and voltageSample to process the RX waveform. But
first, it is important to understand Data Slicer operation:

1. Each time the clock time occurs at the start of a Ul,
2. The DFECDR block applies its taps,

3. The data slicer is triggered at +0.5 Ul later,

4. Then the tap value decision occurs for that bit.

A data slicer outputs both a symbol and a voltage. For example, if the data slicer operates at the 0.5
UI location, the slicer outputs a symbol as +0.5 or -0.5 and voltage value the symbol has reached.

Find Ul Boundaries from Data Slicer

The system runs on a sample-based time step, so you can keep track of UI boundaries by setting up a
sample and symbol counter. When a sample count is divisible by this setting for "samples per bit," this
defines a symbol boundary. This way, you can find combinations of HF (e.g. 010, 101) or LF (e.g. 111,
000) data words to optimize for critical equalization:

% How often to update CTLE Config
updateFrequencySymbols = 1000;
% Range of CTLE configurations
minCTLEConfig = 0;
maxCTLEConfig = 15;
% Set up a sample and symbol counter to track overall progress
sampleCounter = sampleCounter+l; % Every call to this function is a sample
% When sample count is divisible by samples per bit, there is a symbol boundary
if mod(sampleCounter,sps) ==
symbolCounter = symbolCounter+l;
updateConfig = true; % Flag to keep from looping in update section
% Maintain bit/voltage history
symbols = [symbols(2:3) symbolRecovered]; % -0.5 or 0.5
voltages = [voltages(2:3) voltageSample]; % Voltages at each symbol
% Keep count of low/high frequency events and sum voltages across those events
% Low frequency = Steady high or low
% High frequency = Rapid tranition

if isequal(symbols, [0.5 0.5 0.5]) || isequal(symbols, [-0.5 -0.5 -0.5]) % 1 1 1 OR

lowFreqCount = lowFreqCount + 1;

lowFreqVoltage = lowFreqVoltage+ abs(voltages(2)); % keep middle voltage sample
elseif isequal(symbols, [-0.5 0.5 -0.5]) || isequal(symbols, [0.5 -0.5 0.5])% 0 1 O (

highFreqCount = highFreqCount + 1;

highFreqVoltage = highFregVoltage+ abs(voltages(2)); % keep middle voltage sampl

end
end

Globally Adapt Receiver Components in Time Domain

Find 3-Symbol Combinations to Sort HF vs. LF Signal Content

You can use MATLAB function Mod to find when the samples/s has reached Mod 0, which defines the
UI boundary. Once the symbol counter has reached modulo 0, you can accumulate these locations as
bits. Then after accumulating sufficient bits (e.g. 1000), calculate the average of the voltages across

this population, and update the CTLE Configuration.

Create an if statement to perform the following test and decision:

» Ifsignalis 111 or 000, increment count variable for LF
* Ifsignal is 010 or 101, increment count variable for HF
» For each case, take the voltage at that symbol and increment variable for voltage counter

% When symbol count is divisible by update frequency, check if CTLE update is needed
if mod(symbolCounter,updateFrequencySymbols) == 0 && updateConfig

% Calculate low/high voltage average

lowFreqgAvg = lowFreqVoltage/lowFregCount;

highFregAvg = highFregVoltage/highFreqCount;

Update the CTLE

You can implement any algorithm you wish, but in this example the CTLE begins with configSelect
value from Init, and the function performs an increment. Each time the DFECDR is evaluated and
compared to a Persistent variable. Depending on this results, the CTLE is incremented or
decremented.

Note: It is important for your code to test that CTLE is not set to an invalid configSelect.

% Increase CTLE config if low freq is above high freq
if lowFregAvg > highFregAvg
% Prevent exceeding maximum CTLE config
if internalConfig < maxCTLEConfig
% If toggle is detected, disable adaptation
if ~isequal(preventToggle,[1 -1 1 -1])
internalConfig = internalConfig + 1;
% Add current action to toggle tracker
preventToggle = [preventToggle(2:4) 1];
else
toggling = true;
end
end
% Decrease CTLE config if high freq is above low freq
elseif lowFregAvg <= highFregAvg
% Prevent exceeding minimum CTLE config
if internalConfig > minCTLEConfig
if ~isequal(preventToggle,[-1 1 -1 1])
internalConfig = internalConfig - 1;
% Add current action to toggle tracker
preventToggle = [preventToggle(2:4) -1];
else
toggling = true;
end
end
end
% Reset variables associated with averaging every updateFrequencySymbols

4-25

4 Design and Simulate SerDes Systems Examples

lowFreqCount = 0;
lowFreqVoltage = 0;
highFreqCount = 0;
highFreqVoltage = 0;
updateConfig = false; % Lock updates until next symbol boundary
end
end

config = internalConfig;

end
é. Eye Diagram - O X
File Tools View Help e

@-a wWwhkbw Q-5 H- Ld-| B

Running T=1.45e-06

Figure: Eye Diagram during Time Domain simulation.

4-26

Globally Adapt Receiver Components in Time Domain

You can see on the Scope that the CTLE started with the value from Init, and the toggle-detector code
"locks" the CTLE configuration after a few iterations:

4 Scope — O =

File Tools View Simulation Help L

CRAECNON S-la-|E- | #&-

Ready Sample based T=1e-06

Figure: When Time Domain simulation begins, the CTLE starts with the value from Init.

You can set the code to start from CTLE configuration 0 and see that the algorithm increments the
configuration until it toggles:

4-27

4 Design and Simulate SerDes Systems Examples

4 Scope _ o W
File Tools View Simulation Help ™
@- W@ - |=-|E- & -

I MATLAEB Function

Sample based |T=2.36e-06

Running
Figure: Scope output from the signal CTLESignal.ConfigSelect if the function is programmed to
start from zero instead of the value from Init.

To find the value for Ignore Bits for the receiver, you can evaluate how many Ul it takes for a CTLE to
settle. In this case, it would be equal to the number of CTLE configurations available.

AMI Model Settings - Rx
Model Type

Dual model
GetWave only

Imit only

Bits to ignore 16

4-28

Globally Adapt Receiver Components in Time Domain

Figure: You can set the value for Ignore Bits to 16, which is the number of CTLE configurations
available in this example.

When the simulation completes, you can see the Time Domain Eye has a valid Bathtub Curve if the
simulation uses sufficient Ignore Bits for the receiver.

4 Init Statistical and Time Domain Analysis Results - O X
File Edit View Insert Tools Desktop Window Help N
NEEds | @/0E|KE
Stat Analysis
Pulse Response 04 Waveform Derived from Pulse Response
Unequalized Unequalized
0.3 Equalized 02 Equalized
0.2 | : |
= = (g h il Iﬂ W
0.1 I
0 0.2
-0.1 04
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4
(s) <107 (s) <108
02 Statistical Eye 0 Statistical Metric | Data |
' 10 Eye Height (V) 0.1921
Eye Width (ps) 84.8868
Fy Eye Area (V*ps) 10.0834
'.I_Eu COM 15.5019
'E VEC 1.5959
o
20 40 60 80
[ps]
Time Domain Analysis
0o Time Domain Eye 0 Time Domain Metric| Data |
< ' ' '] 10 Eye Height (V) 0.1793
Eye Width (ps) 843764
2 Eye Area (V*ps) 9.5033
E COM 12.3182
2 VEC 2.4084
o Winimum BER 3.3333e-05
20 40 60 80
[ps]

Figure: Statistical and Time Domain Results with sufficient Ignore Bits.

You can test the effect of Ignore Bits by setting the value to zero and re-running the simulation:

4-29

4 Design and Simulate SerDes Systems Examples

AMI Model Settings - Rx
Model Type
(®) Dual model
() GetWave only
() Imit only

Bits to ignore I:I

Figure: You can set the value for Ignore Bits to 0 from 16 to test its effect of Time Domain results.

4. Init Statistical and Time Domain Analysis Results B - %

Eile Edit Niew Insert JTools Desktop Window Help

Ndde | @(0E| KE

Stat Analysis
Wawveform Derived from Pulse Response

04 Pulse Response
UI‘IEqIfa"Z‘Ed 0.9 | il |'{'| Unaqlfalizad]
Equalizad ||. Equalizad
502 | = o
l 0.2 \ I'-J [.J
0 i i i .
0 0.2 0.4 0.6 0.8 04 0.5 1 1.5
[5] =107 5] %107
s Statistical Eye 100 Statistical Metric | Data |
— Eye Height (V) 0.1921
= Eye Width (ps) 84.8858
= E Eye Area (V*ps) 10.0834
B COM 15.5019
. 110’ ST VEC 1.5859

[ps]

Time Domain Metric Data

— Eve Height (V) 2.5820e-05
= Eye Width (ps} 0.0054
E Eye Area (V*ps) 0.0012
2 COM 9.8184e-04
= VEC 80

Minimum BER 2.5000e-05

4-30

Globally Adapt Receiver Components in Time Domain

Figure: Statistical and Time Domain Results with insufficient Ignore Bits.

See Also
CTLE | DFECDR | optPulseMetric

More About

. “Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes
Performance” on page 4-10

4-31

4 Design and Simulate SerDes Systems Examples

Model Clock Recovery Loops in SerDes Toolbox

This example shows how to create detailed models of different types of serial channel clock recovery
loops such as Alexander (bang-bang), Meuller-Muller, and Hogg & Chu.

Clocked Sampler Block

To model a clock recovery loop accurately, the representation of the clock edge times and the
associated sampling of the data signal must be as precise as possible. This example demonstrates a
method for accomplishing that within a model that uses a fixed step discrete sample time. This
method is packaged inside a Clocked Sampler block that models both the clock oscillator and the data

sampling latch.

The behavior of the clock oscillator and data sampling latch are very similar for different types of
clock recovery loops. But the behavior and implementation of the phase detector and loop filter can
vary much more widely. For example, for an Alexander clock recovery loop, the phase detection is
boased on comparison of logic values latched at the rising and falling edges of the clock. In contrast,
Hogg & Chu phase detection compares the timing of the clock falling edge with the data threshold
crossing time, and Meuller-Muller phase detection depends solely on voltage sampling at the baud
rate. The structure of the clock recovery loop model makes is as easy as possible to accommodate

these differences.

Open the model SerDesClockRecovery attached to this example.

open('SerDesClockRecovery.slx');

==
Stimulus #| Channel » | ——
Stimulus Eye Diagram
L waveln riseSample #| riseSample
fallSample
ClockedSampler p|fallSample AlexanderLoopFilter periodOfset f———————————
clock -0\9__
—| pericd Offset
clockTime I -
WVCO & Decision Latch Bang Bang Loop Filter Filter Salect 1
out.clockTimes [
— riseSample
MeullertullerLoopFilter paripdCffzet _.._0\9—
| clock
-
Meuller-Muller Loop Filter Filter Select 2
| riseSample
| fallSample HoggChuloopFilter pericdOfizet
¥ clock

4-32

»]

Loop Filter Output

Model Clock Recovery Loops in SerDes Toolbox

F o || = | ER
File Tools VWiew Help u

-l ®k - Q-3 H-|Wd-|

=3
=
oL
™
o
F

Ready

4-33

4 Design and Simulate SerDes Systems Examples

4-34

[= [=] &3

File Tools View Simulation Help N

G- E4® Pk =R RN R

Ready Sample based

To generate a data signal for clock recovery, this model uses a data generator driving a lossy analog
channel. Additional delay is inserted to introduce a delay offset with respect to the stimulus. The
delayed data signal drives a single Clocked Sampler block that supplies a clock and data data
samples to three different loop filters: an Alexander loop filter, a Meuller-Miller loop filter, and a Hogg
& Chu loop filter. You can slect the output of any one of these three loop filters as the feedback signal
to control the Clocked Sampler using the switches provided. Insert a one sample delay to avoid an
algebraic loop.

Use scope displays to view the data signal and the clock recovery feedback signal.

The Clocked Sampler, Alexander Loop Filter, Meuller-Muller Loop Filter, and Hogg & Chu Loop Filter
are all implemented as system objects. The example contains the source code for these system object
classes. This code structure was chosen to present the algorithmic relationship between the Clocked
Sampler and the loop filter as clearly as possible. To implement this functionality within a SerDes
Toolbox receiver you must combine the algorithmic content into a single object class that more
closely resembles the serdes.cdr object class.

Within the Clocked Sampler, the rising and falling clock edge times are represented as floating point
numbers that are calculated to include the effects of phase noise and clock offset frequency as well as

Model Clock Recovery Loops in SerDes Toolbox

the period offset control signal. When a clock edge time is greater than the previous sample time but
less than the current sample time, the data signal at the clock edge time is sampled using linear
interpolation between the current and previous data signal values. The rising edge sample value,
falling edge sample value, clock signal value and recorded clock time are all updated at the sample
time following each clock edge. The timing in the loop filter is not critical, and loop filter processing
can be performed at the sample time when the loop filter receives a clock transition.

Alexander (Bang-Bang) Clock Recovery

The Alexander clock recovery loop detects the clock phase by determining whether the sign of the
data signal at the falling edge of the clock matches the sign of the data signal at the rising edge of the
clock that occurred either before or after the falling edge. If the sign at the falling edge matches the
sign at the previous rising edge but not the subsequent rising edge, then the clock is early.
Conversely, if the sign at the falling edge matches the sign at the subsequent rising edge but not the
sign at the previous rising edge, then the clock is late. The loop filter is an up-down counter that
produces either a positive (early) or negative (late) pulse when it overflows. For a detailed
explanation of an Alexander clock recovery loop, see “Clock and Data Recovery in SerDes System” on
page 1-3.

The initial configuration of the SerDesClockRecovery model selects the output of the Alexander loop
filter to control the clock phase in the Clocked Sampler.

Run the simulation and plot the time history and the histogram of the recovered clock phase. Save
the time history of the recovered clock phase to the base workspace so that you can analyze it as you
choose.

simout = sim(gcs);
ctBB = plotClockTimes(simout);

4 = [=] 3

File Tools View Help o
-8/ or®| - a0 - L-|H

il
=
=1
E
oL
™
o
F

Resady T=1e-0E

4-35

4 Design and Simulate SerDes Systems Examples

(4] = [=] &3

File Tools View Simulation Help N

@-la4® P =R RN R

Ready Sample bazed T=1e-06

4-36

Model Clock Recovery Loops in SerDes Toolbox

Clock Offset (5)

o
=}

o
o

oo
B

o
ma

=

o
@

o
=]

5.4

5.2

w101 Clock Data Decision Time Offset vs. Time
? —

o

N
— A

i

0 1000 2000 3000 4000 5000 6000 7OOO 8OO0 9000 10000
Mumber of Data Symbols

4-37

4 Design and Simulate SerDes Systems Examples

4-38

Clock Data Decision Time Offset Histogram
7000 1

6000

on

=

=

=
T

4000

3000

Mumber of Data Symbols

Pl

=

=

=
T

1000

1 1 1 1 1 = = | 1 rII I | | 1
0
5.4 5.6 5.8 6 62 6.4 6.6 6.8 7
Clock Offset (S) w101

Meuller-Muller Clock Recovery

The Meuller-Muller clock recovery algorithm assumes that the data waveform changes fastest when
there is a transition between data symbol values, such as a transition from a one to a zero for an NRZ
data signal. This assumption enables the clock recovery loop to use one quantitative voltage per
symbol, wich is an advantage at high data rates. The time error estimate for the example's Meuller-
Muller Loop Filter is drawn from CLOCK AND DATA RECOVERY FOR HIGH-SPEED ADC-BASED
RECEIVERS, section 2.3.1

Ta = (i1} — (widki-1)

where ¥i-11is the previous voltage sample, ¥i is the current voltage sample, ¥i-1 is the previous
latched symbol value and ¥ is the current latched symbol value.

To evaluate the response of the Meuller-Muller clock recovery loop, move the Filter Select 1 switch to
its second input port. Run the simulation and add the time history of the recovered clock phase and
clock phase histogram to the figures that have already been created for the Alexander clock recovery
loop. Save the time history of the clock phase to the base workspace so that you can analyze it later.

set param([gcs '/Filter Select 1'],'sw','0');
simout = sim(gcs);
CtMM = plotClockTimes(simout);

https://tspace.library.utoronto.ca/bitstream/1807/27606/1/Tyshchenko_Oleksiy_201103_PhD_thesis.pdf
https://tspace.library.utoronto.ca/bitstream/1807/27606/1/Tyshchenko_Oleksiy_201103_PhD_thesis.pdf

Model Clock Recovery Loops in SerDes Toolbox

4 = [=] 3

File Tools VWiew Help u
@- =/ OP@|=- 4L H-|Ld-

Ready T=1e-06

4-39

4 Design and Simulate SerDes Systems Examples

(] = [=] &3

File Tools View Simulation Help N

@-a4® P =R RN R

Ready Sample bazed T=1e-06

4-40

Model Clock Recovery Loops in SerDes Toolbox

Clock Offset (5)

w101 Clock Data Decision Time Offset vs. Time
951

- &=
o =] o
T T

-
T

A

_JPI_I.—P_. L —
|

o
o

1
I
i
5'5f

5 i i i i i i i i i i
0 1000 2000 3000 4000 5000 6000 7OOO 8OO0 9000 10000
Mumber of Data Symbols

4-41

4 Design and Simulate SerDes Systems Examples

Clock Data Decision Time Offset Histogram
7000 1

6000

on

=

=

=
T

4000

3000

Mumber of Data Symbols

Pl

=

=

=
T

1000

1 1 T | " ool 1 1 —
0
5.5 6 6.5 7 7.5 8 8.5 9
Clock Offset (S) w101

Hogg & Chu Clock Recovery

The Hogg & Chu clock recovery algorithm performs a relatively direct measurement of the clock
phase by measuring the time between the threshold crossing of the data signal and the falling edge of
the recovered clock. While blocks could be added to the example model to measure the data signal
threshold crossing time directly, the Hogg & Chu Loop Filter in this example uses the simplifying
approximation that the data signal slope in the threshold crossing region is constant. As estimated
once a threshold crossing has been confirmed by the the sample at the next clock edge, the time
error is

_ Hi1vg

I”n'u'l {a.r

where ¥i-1is the previously detected data symbol value, ¥/ is the voltage recorded on the previous
clock edge, and "max is the maximum data signal amplitude.

To evaluate the reponse of the Hogg & Chu clock recovery loop, move the Fiter Select 2 switch to its
second input port. Run the simulation, and add the time history of the recovered clock phase and
clock phase histogram to the figures that have already been created for the Alexander and Meuller-
Muller clock recovery loops. Save the time history of the clock phase to the base workspace so that
you can analyze it later.

set param([gcs '/Filter Select 2'],'sw','0');

simout = sim(gcs);
ctHC = plotClockTimes(simout);

4-42

Model Clock Recovery Loops in SerDes Toolbox

4 = [=] 3

File Tools VWiew Help u
@- =/ OP@|=- 4L H-|Ld-

Ready T=1e-06

4-43

4 Design and Simulate SerDes Systems Examples

4 = [=] &3

File Tools View Simulation Help N

@-la4® P =R RN RN

Ready Sample bazed T=1e-06

4-44

Model Clock Recovery Loops in SerDes Toolbox

= &=
=~ o =] o

Clock Offset (5)

o
o

w101 Clock Data Decision Time Offset vs. Time

L |I

\ \, !) ! p AR A N,)
W Ade
|

1000 2000 3000 4000 5000 6000 7VOOO 8000 9000 10000

Mumber of Data Symbols

4-45

4 Design and Simulate SerDes Systems Examples

Clock Data Decision Time Offset Histogram

000

6000

on
=
=
=
T

4000

3000

Mumber of Data Symbols

[

[

=

=]
T

1000

|| 1 1 —h

D i i oo 0
5.5 6 6.5 7 7.5 8 8.5 9

Clock Offset (S) w101

4-46

Customize SerDes Systems

* “Customizing SerDes Toolbox Datapath Control Signals” on page 5-2

* “Customizing Datapath Building Blocks” on page 5-14

* “Implement Custom CTLE in SerDes Toolbox PassThrough Block” on page 5-28
* “Step Response Based CTLE ” on page 5-37

5 customize SerDes Systems

Customizing SerDes Toolbox Datapath Control Signals

This example shows how to customize the control signals in a SerDes system datapath by adding new
custom AMI parameters and using MATLAB® function blocks. This allows you to customize existing
control parameters without modifying the built-in blocks in the SerDes Toolbox™ library.

This example shows how to add a new AMI parameter to control the operation of the three
transmitter taps used by the FFE block. The custom AMI parameter simultaneously sets all three taps
to one of the ten values defined by the PCle4 specification or allows you to enter three custom
floating-point tap values. To know more about how to define a PCle4 transmitter model, see “PCle4
Transmitter/Receiver IBIS-AMI Model” on page 7-2.

PCled Transfer Model

The transmitter model in this example complies with the PCle4 specification. The receiver is a simple
pass-through model. A PCle4 compliant transmitter uses a 3-tap feed forward equalizer (FFE) with
one pre-tap and one post-tap, and ten presets.

Open the model adding tx ffe params. The SerDes system Simulink® model consists of
Configuration, Stimulus, Tx, Analog Channel and Rx blocks.

open_system('adding tx ffe params.slx')

Configuration

——®]Waveln Tx WaveOut f—————®{Waveln Analog Channel WaveOut] Waveln Fox WaveOut >

[

Eye Diagram

Caopyright 2018 The MathWorks, Inc.

* The Tx subsystem contains an FFE block to model the time-domain portion of the AMI model and
an Init block to model the statistical portion.

* The Analog Channel block has the PCle4 parameter values for Target frequency, Loss,
Impedance and Tx/Rx analog model parameters.

* The Rx subsystem has a Pass-Through block and an Init block.
Add New AMI Parameter

Add a new AMI parameter to the transmitter which is available to both the Init and GetWave datapath
blocks and functions. The parameter is also included in the Tx IBIS-AMI file.

Double-click the Configuration block to open the Block Parameters dialog box. Click the Open
SerDes IBIS-AMI Manager button. Go to the AMI-Tx tab of the SerDeS IBIS-AMI Manager dialog
box.

* Select the FFE parameter, then click Add Parameter... to add a new FFE sub-parameter.
* Set the Parameter name to ConfigSelect.

5-2

Customizing SerDes Toolbox Datapath Control Signals

* Keep the Current value as 0.

* In the Description, add Pre/Main/Post tap configuration selector.
* Keep the Usage as In.

* Set the Type to Integer.

* Set the Format to List.

* Under the List Format details, set Default to 0.

* SetListvaluesto[-1 0 12 3456 7 8 9]

* Set List_Tip values to ["User Defined" "P0" "P1" "P2" "P3" "P4" "P5" "Po6" "P7"
n P8 n n P9 n]

A new parameter ConfigSelect* is added to the AMI-Tx tab.
Modify Init

Modify the Initialize MATLAB function inside the Init block in the Tx subsystem to use the newly
added ConfigSelect*parameter. The ConfigSelect* parameter controls the existing three
transmitter taps. To accomplish this, add a switch statement that takes in the values of
ConfigSelect* and automatically sets the values for all three Tx taps, ignoring the user defined
values for each tap. If a ConfigSelect value of -1 is used, then the user-defined Tx tap values are
passed through to the FFE datapath block unchanged.

Inside the Tx subsystem, double-click the Init block to open the Block Parameters dialog box and click
the Refresh Init button to propagate the new AMI parameter to the Initialize sub-system.

Type Ctrl-U to look under the mask for the Init block, then double-click on the initialize block to open
the Initialize Function.

Double-click on the impulseEqualization MATLAB function block to open the function in MATLAB.
This is an automatically generated function which provides the impulse response processing of the

5-3

5 customize SerDes Systems

SerDes system block (IBIS AMI-Init). The %% BEGIN: and % END: lines denote the section where
custom user code can be entered. Data in this section will not get over-written when Refresh Init is
run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
FFEParameter.ConfigSelect; % User added AMI parameter
% END: Custom user code area (retained when 'Refresh Init' button is pressed)

To add the custom ConfigSelect control code, scroll down the Customer user code area, comment out
the FFEParameter.ConfigSelect line, then enter the following code:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
%sFFEParameter.ConfigSelect; % User added AMI parameter
switch FFEParameter.ConfigSelect

case -1 % User defined tap weights

FFEInit.TapWeights = FFEParameter.TapWeights;

case 0 % PCIe Configuration: PO

FFEInit.TapWeights = [0.000 0.750 -0.250];

case 1 % PCIe Configuration: P1

FFEInit.TapWeights = [0.000 0.830 -0.167];

case 2 % PCIe Configuration: P2

FFEInit.TapWeights = [0.000 0.800 -0.200];

case 3 % PCIe Configuration: P3

FFEInit.TapWeights = [0.000 0.875 -0.125];

case 4 % PCIe Configuration: P4

FFEInit.TapWeights = [0.000 1.000 0.000];

case 5 % PCIe Configuration: P5

FFEInit.TapWeights = [-0.100 0.900 0.000];

case 6 % PCIe Configuration: P6

FFEInit.TapWeights = [-0.125 0.875 0.000];

case 7 % PCIe Configuration: P7

FFEInit.TapWeights = [-0.100 0.700 -0.200];

case 8 % PCIe Configuration: P8

FFEInit.TapWeights = [-0.125 0.750 -0.125];

case 9 % PCIe Configuration: P9

FFEInit.TapWeights = [-0.166 0.834 0.000];

otherwise

FFEInit.TapWeights = FFEParameter.TapWeights;

end

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

To test that the new FFE control parameter is working correctly, open the SerDes IBIS-AMI Manager
dialog box from the Configuration block. In the AMI-Tx tab, edit the ConfigSelect* parameter to set
Current value to P7. This corresponds to PCle Configuration P7: Pre = -0.100, Main = 0.700 and
Post = -0.200.

Run the simulation and observe the results of Init statistical analysis. Note: The Time Domain
waveform will not be correct until you wire the Constant block for the new parameter ConfigSelect
in the canvas for the FFE. You will see how to do this in the next section.

Customizing SerDes Toolbox Datapath Control Signals

[4] Init Statistical and Time Demain Analysis Results — O >
Eile Edit ¥iew [Insert Tools Desktop Window Help k]
A IR EINY::

Stat Analysis

1 Pulse Response Waveform Derived from Pulse Response
Unaqualized 0.5 W‘ r D M - Ll.lne;lu&lllized 'I'[
Equalized
J| ! 'I | | ’I'
os = off | | hl Hh | -‘\
J “I .!"|r ! ‘ | | I l||l
0 Hiir-ew ll L] J | J
¥ 0.5 ¢ b 'x,l W |J | Y Ui
0 0.2 0.4 0.6 0.8 1 0 2 4 6 8
(5] x1078 =] %108
Statistical Eye 100 Statistical Metric | Data |
Eye Height (V) 0.2869
Eye Width (p=) 45.4102
E Eye Area (V*ps) 10.2293
a COoM 5.5193
B VEC 6.5526
o
0 10 20 30 40 50 60
[ps]
Time Domain Analysis
Time Domain Eye } Tirne Domain Metric Data
F——— — Eye Height (V) 9.9905e-12
e . Eye Width (ps) 3.7011e-10
E Eye Area (V*ps) 10.8044
= % COM 9.6907e-11
= E WVEC 80
o Kinimum BER 5.0000e-04
[ps]

Next, set the Current value of the ConfigSelect* parameter to User Defined. This corresponds to
user-defined tap weights: Pre = 0.000, Main = 1.000 and Post = 0.000.

Run the simulation and observe the results of Init statistical analysis.

5 customize SerDes Systems

|4 Init Statistical and Time Demain Analysis Results — O >

Eile Edit ¥iew [Insert Tools Desktop Window Help k]

NEde |2 08| bE

Stat Analysis

Pulse Response Waveform Derived from Pulse Response

J
|
||[L

Unequalized 0.5
Equalized

Biw v Wi
(f I Unequalized

(V]

il
I
L]

]
|
0 H' s JL.LM'

|

i 0.5
0 0.2 0.4 0.6 0.8 1 0 2 4 6 8
(5] w10 (5] x 107
1 . Statistlical Eyr-.? . ~ 100 Statistical Metric | Data |
Eye Height (V) 0.5044
Eye Width (ps) 52.4902
= Eye Area (V*ps) 21,5459
% COM 96220
E WEC 3.4823
=
0 10 20 a0 40 50 a0
[ps]
Time Domain Analysis
Time Domain Eye a Tirne Domain Metric Data
1 ' ' ' ' 10 Eye Height (V) 9.9905e-12
Eye Width (ps) 3.7011e-10
E Eye Area (V*ps) 10.8044
= % COM 9.6907e-11
= E WVEC 50
o Minimum BER 5.0000e-04
0 10 20 a0 40 50 a0
[Ps]

Try different values of ConfigSelect* to verify proper operation. The statistical eye opens and closes
based on the amount of equalization applied by the FFE. How much the eye changes, and the tap
values that create the most open eye varies based on the loss defined in the Analog Channel block.
Modify GetWave

To modify GetWave, add a new MATLAB function that operates in the same manner as the Initialize
function.

Inside the Tx subsystem, type Ctrl-U to look under the mask of the FFE block.

5-6

Customizing SerDes Toolbox Datapath Control Signals

FFEParameter.Mode

Mode FFE out

h 4

FFEMode Out

FFEParameter. TapWeights

h 4

TapWeights

FFETapWeights

FFE

FFEParameter.ConfigSelect >

ConfigSelect

* You can see that a Constant block was automatically added by the IBIS-AMI manager to the
canvas with the Constant value set to FFEParameter.ConfigSelect.

* Add a MATLAB Function block to the canvas from the Simulink/User-Defined library.
* Rename the MATLAB Function block to PCIe4FFEconfig.
* Double-click the MATLAB Function block and replace the template code with the following:

PCIe4 tap configuration selector
Selects pre-defined Tx FFE tap weights based on PCIe4 specified
configurations.

Inputs:
TapWeightsIn: User defined floating point tap weight values.
ConfigSelect: 0-9: PCIe4 defined configuration (PO-P9).
-1: User defined configuration (from TapWeightsIn).
Outputs:
TapWeightsOut: Array of tap weights to be used.

0° 0% 0% 0% 0° o° O° O° o° o o°

function TapWeightsOut = PCIe4FFEconfig(TapWeightsIn, ConfigSelect)

switch ConfigSelect

case -1 % User defined tap weights
TapWeightsOut = TapWeightsIn;

case 0 % PCIe Configuration: PO
TapWeightsOut = [0.000 0.750 -0.2501];

case 1 % PCIe Configuration: P1
TapWeightsOut = [0.000 0.833 -0.1671];

case 2 % PCIe Configuration: P2
TapWeightsOut = [0.000 0.800 -0.200];

case 3 % PCIe Configuration: P3
TapWeightsOut = [0.000 0.875 -0.125];

case 4 % PCIe Configuration: P4
TapWeightsOut = [0.000 1.000 0.000];

case 5 % PCIe Configuration: P5
TapWeightsOut = [-0.100 0.900 0.000];

case 6 % PCIe Configuration: P6
TapWeightsOut = [-0.125 0.875 0.000];

5-7

5 customize SerDes Systems

case 7 % PCIe Configuration: P7
TapWeightsOut = [-0.100 0.700 -0.200];
case 8 % PCIe Configuration: P8
TapWeightsOut = [-0.125 0.750 -0.125];
case 9 % PCIe Configuration: P9
TapWeightsOut = [-0.166 0.834 0.000];
otherwise
TapWeightsOut = TapWeightsIn;
end

Re-wire the FFE sub-system so that the FFETapWeights and FFEConfigSelect constant blocks connect
to the inputs of the newly defined PCle4FFEconfig MATLAB function block. The TapWeightsOut signal
from the PCle4FFEconfig block connects to the TapWeights port of the FFE block.

L1 F = In
In
N o) Inf D1
FFEParameter. Mode | »{ Mode FFE outf——»{(1)
FEEMod: Qut

- — 1x3 5 .
FFEParameter. TapWeights H}Tﬁpwaghl&ln [1x3] Tepielants

e) TapWeightsOut
FFEParameter.ConfinSelect l—’ ConfigSelect

FFE

PCledFFEconfig

To test that the new FFE control parameter is working correctly, open the SerDes IBIS-AMI Manager
dialog box from the Configuration block. In the AMI-Tx tab, edit the ConfigSelect* parameter to set
Current value to P7. This corresponds to PCle Configuration P7: Pre = -0.100, Main = 0.700 and
Post = -0.200. Observe the output waveform.

Customizing SerDes Toolbox Datapath Control Signals

|4 Init Statistical and Time Demain Analysis Results — O >
Eile Edit ¥iew [Insert Tools Desktop Window Help k]
w
NSde |2 08 ~E
Stat Analysis
1 Pulse Response Waveform Derived from Pulse Response
T I I T [FRPIR PN
Unaqualized 0.5 ll r M Unequalized 'I'[
Equalized ’
| ! il il | [
—05 = ‘ |
: i h' ‘h |“
J ‘r .!" il ‘| v 4l l |l
0l b i | | J J | LJ |
I* 5L L\-'\J I'--.l W ! i ‘.J
0 0.2 0.4 0.6 0.8 1 1] 2 4 & 8
[s] x10% [s] %107
Statistical Eye a Statistical Metric | Data |
10 Eye Height (V) 0.2869
Eye Width (ps) 45.4102
E Eye Area (V*ps) 102293
% COoOM 2.5193
B VEC 6.5526
o
107
0 10 20 30 40 50 60
[ps]
Time Domain Analysis
Time Domain Eye 0 Tirne Domain Metric Data
05" ' ' ' 10 Eye Height (V) 0.0428
Eve Width (ps) 35.8652
E Eye Area (V*ps) 3.8857
— = COM 0.6367
a m
& WEC 23.0142
o Minimum BER 5.0000e-04
[ps]

5-9

5 customize SerDes Systems

4. Eye Diagram — O >

Eile Tools VWiew Help u

-l ®k 2-la-|BH-|Wd-| =

P
i
=1

=
oL

Re

Ready T=1.25e-07

Next, set the Current value of the ConfigSelect* parameter to User Defined. This corresponds to
user-defined tap weights: Pre = 0.000, Main = 1.000 and Post = 0.000. Observe how the output

waveform changes.

5-10

Customizing SerDes Toolbox Datapath Control Signals

[Ps]

|4\ Init Statistical and Time Demain Analysis Results — | >
Eile Edit ¥iew [Insert Tools Desktop Window Help k]
A I EI Y
Stat Analysis
Pulse Response Waveform Derived from Pulse Response
1 r r r r r T T
Unequalized 0.5 | '| .I;qu m Unequalized
Equalized ' || ‘ |'
| = ‘| | H | | | ‘
| ||| ! w ll Il
o5 LU WUTY LAY
0 2 4 & 8
(5] w107
Statistical Metric | Data |
Eye Height (V) 0.5044
Eye Width (p=) 52.4902
Z Eye Area (V*ps) 21.5459
= COM 9.6220
B VEC 3.4623
=
[ps]
Time Domain Analysis
Time Domain Eye " Tirne Dormain Metric Data
' ' ' 10 Eye Height (V) 9.9905e-12
Eye Width (ps) 3.7011e-10
E Eye Area (V*ps) 10.8944
% COM 9.5907e-11
—g VEC G0
oL Minimum BER 5.0000e-04

5-11

5 customize SerDes Systems

5-12

4. Eye Diagram — O >

Eile Tools VWiew Help u

@- 5 OP® - a5 B -

il
'[E
=1

=
=
™

o
F

Ready T=1.25e-07

Try different values of ConfigSelect* to verify proper operation. The time-domain eye opens and
closes based on the amount of equalization applied by the FFE. How much the eye changes, and the
tap values that create the most open eye varies based on the loss defined in the Analog Channel
block.

Export the Tx IBIS-AMI Model

Verify that both Init and GetWave are behaving as expected, then generate the final IBIS-AMI
compliant PCIe4 model executables, IBIS and AMI files.

Double-click the Configuration block to open the Block Parameters dialog box. Click the Open
SerDes IBIS-AMI Manager button, then select the Export tab:

* Update the Tx model name to pcie4 tx.

+ Tx and Rx corner percentage is set to 10. This will scale the min/max analog model corner
values by +/-10%.

* Verify that Dual model is selected as Model Type for the Tx. This will create model executables
that support both statistical (Init) and time domain (GetWave) analysis.

* Set the Tx model Bits to ignore parameter to 3 since there are three taps in the Tx FFE.
* Set the Models to export to Tx only.

* Set the IBIS file name (.ibs) to pcie4 tx serdes.ibs

* Click the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Model

The PCle4 transmitter IBIS-AMI model is now complete and ready to be tested in any industry
standard AMI model simulator.

Customizing SerDes Toolbox Datapath Control Signals

References

PCI-SIG.

See Also
FFE | PassThrough | SerDes Designer

More About
. “Managing AMI Parameters” on page 6-2
. “PCle4 Transmitter/Receiver IBIS-AMI Model” on page 7-2

5-13

https://pcisig.com

5 customize SerDes Systems

Customizing Datapath Building Blocks

This example shows how to customize a PassThrough block in Simulink® to use a MATLAB® function
block or other Simulink library blocks. You will see how the implementation of a receiver gain or
attenuation stage is controlled by an IBIS-AMI parameter, and this example provides a guide to
modify PassThrough blocks to implement custom functions for a SerDes system.

PassThrough Block Function and Use

By default, PassThrough block is, as the name implies, a block that passes the input impulse or
waveform to the output with no modifications. This block can be used as a floor planning tool in the
SerDes Designer App and then customized after exporting to Simulink. Under the mask of a
PassThrough block is a MATLAB System block referencing the serdes.PassThrough System object™
which when called by Simulink forwards the input to the output. The MATLAB System block can be
updated to reference other SerDes System objects or can be replaced with other Simulink blocks as
this example outlines. For an example of customizing with System objects, see “Implement Custom
CTLE in SerDes Toolbox PassThrough Block” on page 5-28.

’

Create SerDes System in SerDes Designer App

Launch the SerDes Designer app. Place a PassThrough block after the analog model of the receiver.
Change the name of the PassThrough block from PT to CustomExample.

| SerDes System |

Tx Rx

ﬁDHM|ka%

AnalogOut Channel Analogin CustomEx...

Block Parameters Plots
CustomExample (Pass Through)

Name: |CustemExample

Export the SerDes system to Simulink.

Configuration

Stimulus. WaveOut | Waveln T WaveOut —baaweln Analog Channel WaveOut P Waveln Rx WaveOut L

[

Eye Diagram

5-14

Customizing Datapath Building Blocks

Add AMI Parameter to Control Gain

Double click on the Rx block to look inside the Rx subsystem and open the SerDes IBIS-AMI Manager
dialog box.

Init

| SerDes |BIS-AMI Manager '

C 1) P Waveln Pass-Through WaveOut @

Waveln WaveOut

CustomExample

In the AMI-Rx tab, select the CustomExample node. Click on the Add Parameter button and set
the variables:

Parameter name to ExampleGain
Description to Gain setting for Receiver
Format to Range

Typto 0.8

Min to 0

Max to 1.

Current value, Usage, and Type are kept at their default values 0, In, and Float, respectively.

5-15

5 cCustomize SerDes Systems

4 SerDes IBIS-AMI Manager - Add/Edit AMI Parameter — O >

Parent Node | CustomExample

Farameter name | ExampleGain |

Current value | 0 |

Description

Gain sefting for Receiver

Usage |In v |
Type | Float v |
Format | Range v |

Fange Format details

Typ |08 |
Min |0 |
Max |1 |
| |Hidden | oK || Cancel |

Confirm settings and click OK.

You will see a parameter automatically generated on the canvas as shown below.

5-16

Customizing Datapath Building Blocks

®—P In Pass Through Out 4@

In Out

PassThrough

-C- >

ExampleGain

Change PassThrough to a MATLAB Function Block

You can create a MATLAB function block and add code to use the ExampleGain parameter as a
modifier to the In signal. To illustrate the workflow, this example will show how to implement a gain
(using multiplication) but any MATLAB function may be implemented for your system.

function out = fcn(in,ExampleGain)
gainSignal = ExampleGain*in;
out=gainSignal;

Then you can delete the PassThrough block, and wire up the MATLAB block with input signals In,
ExampleGain and output signal Out as shown:

n 4 ont

. P, fen Bt

ExampleGain

MATLAB Function

Remember to go back to the Rx subsystem, double-click on Init and click the button Refresh Init.
You can see the affect of the value of the parameter ExampleGain by opening the IBIS AMI Manager
and changing the Current value of ExampleGain to 0. 8.

5-17

5 customize SerDes Systems

5-18

4| SerDes IBIS-AMI Manager

Export |IBIS |AMI—T){ AMI - R

* serdes_rd

- Reserved_Parameters
AMI_Version
Init_Returns_Impulse
Get\Wave_Exists
Max_Init_Agaressors
Muodulation
lgnaore_Bits

= [Model_Specific

 CustomExample

ExampleGain *

* Added # Hidden

| Reserved Parameters... | ~dd Paramets

Node Details

Mode name | ExampleGain

Description
Gain setting for Receiver

Type | Float
Usage | In

Format | Range

Typ | 0.8
Min 0
Max |1

Current value | na |

ture | Delete || Edit.. |

| Close

Run the simulation and observe the results.

Customizing Datapath Building Blocks

4. Eye Diagram — O *

Eile Tools VWiew Help u

@- a8/ o0r® - &5 H-|u-|E

ik}
k|

=1

E

=

m

i
fid

Change the Current value of ExampleGain to 1.0 and re-run the simulation to confirm
ExampleGain parameter is modifying the Receiver signal.

5-19

5 customize SerDes Systems

5-20

4. Eye Diagram
Eile Tools VWiew Help

@- a8/ 0rP®| - &5 H-| -8

k]
'[E
=1

E
=
™

i
fid

These steps showed you how to implement an AMI parameter called ExampleGain using a MATLAB
function block in your system. You can also use built-in blocks to customize a PassThrough block as
explained in the section "Change PassThrough to Gain Block or Other Built-in Block."

Change PassThrough to Gain Block or Other Built-in Block

Another way to configure a custom PassThrough block for your model is to use a built-in block. For
example, a Gain block can be added within the PassThrough block. Instead of creating a MATLAB
function block, look under the mask of the "CustomExample" block after the parameter
ExampleGain is created from the steps in section "Add AMI Parameter to Control Gain" above:

(1 y—>»{In PassThrough Out—»(1)

Out

PassThrough

C- >

ExampleGain

Customizing Datapath Building Blocks

Delete the parameter ExampleGain. You should see the canvas now looks like the default
serdes.PassThrough System Object:

In Pass Through Out 4@

In Out

PassThrough

Next, delete the MATLAB System block that points to the serdes.PassThrough System Object:

Add a Gain block from the Simulink > MathOperators library and connect the Gain block between the
input and output ports:

Note: While this example uses a Gain block to illustrated workflow, you can use any built-in block (as
well as a MATLAB function).

Out
Gain

5-21

5 customize SerDes Systems

Connect Block Parameters of Gain Block to Added AMI Parameter

Constants are represented as Simulink parameters. Double click the Gain block to open the Block
Parameters dialog box. Set Gain value to CustomExampleParameter.ExampleGain.

@ Block Parameters: Gain e
Gain

Element-wise gain (y = K.*u) or matrix gain (y = K*u or y = u*K).

Main Signal Attributes = Parameter Attributes

Gain:

l CustomExampleParameter. ExampleGain

Multiplication: | Element-wise(K.*u) ¥

J Cancel Help Apply

Update Code that Runs During Statistical Analysis

To enable the gain to be applied to the impulse response during statistical analysis, double click the
Init block inside the Rx subsystem. Click the Refresh Init button to add the new AMI parameter to
the Init code. Click the Show Init button to open the MATLAB editor window and look for the
Custom user code area surrounded by %%BEGIN and %END comments. Your code associated with
the customized PassThrough block is encapsulated in this section.

%% BEGIN: Custom user code area (retained when 'Befresh Init' button is pressed)

TERTS

CustomExampleParameter.ExampleGain; % User added AMI parameter from SerDes IBIS-AMI Manager

% END:

5-22

Custom user code area (retained when "Refresh Init' button is pressed)

Implement Gain

In the Custom user code area, edit your customized code to perform a Gain operation on the local
variable containing the Impulse Response. To do this, replace the code:

CustomExampleParameter.ExampleGain;
with:
LocalImpulse = LocalImpulse*CustomExampleParameter.ExampleGain;

The Custom user code area should appear as below:

Customizing Datapath Building Blocks

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
LocalImpulse = LocalImpulse*CustomExampleParameter.ExampleGain; % User added AMI parameter from SerDes IBIS-2MI Manager
t END: Custom user code area (retained when 'Refresh Init' button is pressed)

Save the changes.

Note: If Init code is not modified, results from the Statistical simulation does not reflect the gain
operation and is only shown in the results from the Time-Domain (GetWave) simulation.

Run Simulation with Gain Setting

Open the SerDes IBIS-AMI Manager dialog box and click on the AMI-Rx tab. Select the
ExampleGain* node and set the Current value to 0. 8.

Run the simulation and observe amplitude of the waveform from Time-Domain (GetWave) and the
waveform from Statistical (Init) results.

4. Eye Diagram — O x

File Tools View Help k]

-8 orP®| - a5 BH-|Ld-| B

5-23

5 customize SerDes Systems

|4 Init Statistical and Time Demain Analysis Results — O >
Eile Edit ¥iew [Insert Tools Desktop Window Help N
FS ;
NSde |2 08~ E
Stat Analysis
Pulse Response 05 Waveform Derived from Pulse Response
0.6 I I I I 1 : . I I
Unequalized Unegqualized
Equalized H Equalized
04 : " H' (| [| T ||
5 = 0 || ‘ ‘ | ‘ |
| UW M\H [t
[t i ll
L N,
0 0.5
0 1 2 3 4 5] 0.2 0.4 0.6 0.8 1 1.2 1.4
(5] x10% =] x107%8
0.4 Statistical Eye a Statistical Metric | Data |
= Eye Height (V) 0.2442
Eye Width (ps) 72,6030
E Eye Area (V*ps) 11.7981
_ = coM
= 3 2.9600
o WELC 6.0816
o
0 20 40 60 80
[ps]
Time Domain Analysis
04 Time Domain Eye " Tirne Domain Metric Data
A R — ' ———— '* Eye Height (V) 0.2640
Eye Width (ps) 769533
E Eye Area (V*ps) 13.2567
. % ComM 67133
= -g WEC 5.3748
o Minimum BER 5.2632e-04
o 20 40 60 a0
[ps]

Change Gain Setting and Observe Change

Open the SerDes IBIS-AMI Manager dialog box and click on the AMI-Rx tab. Select the
ExampleGain* node and set the Current value to 0.4.

Run the simulation again and observe how the amplitude changes for both the waveform from Time-
Domain (GetWave) and the waveform from Statistical (Init).

5-24

Customizing Datapath Building Blocks

4. Eye Diagram — O *

Eile Tools VWiew Help u

-l @k 2-a-|CB|H-|Wd-| =

5-25

5 customize SerDes Systems

|4 Init Statistical and Time Demain Analysis Results

Eile Edit ¥iew [Insert Tools Desktop Window Help

NEEde |2 0B bE

Stat Analysis
Pulse Response

Waveform Derived from Pulse Response

0.6 . 0.5 1
Unequalized 1 Unequalized
Equalized | | Equallzed
02 } ' I
d [| U l { | | u
L \l
0 0.5
0 1 2 3 4 5 0 0.2 0.4 0.6 0.8 1 1.2 1.4
(5] w10 (5] « 1078
0.2 Statistical Eye 100 Statistical Metric | Data |
: s Eye Height (V) 01221
Eye Width (ps) 72,6030
E Eye Area (V*ps) 53091
o~ % COM 3.59600
= E WEC 6.0816
o,
0 20 40 60 80
[ps]
Time Domain Analysis
. Time Domain Eye " Tirne Domain Metric Data
0.2 ' ' | 10 Eye Height (V) 0.1320
Eye Width (ps) 769533
E Eye Area (V*ps) 65283
% COM 67183
E WEC 5.3748
o Kinimum BER 5.2632e-04
[ps]

These steps showed you how to implement an AMI parameter called ExampleGain using a built-in
block to customize a PassThrough block. You can also implement an AMI parameter using a MATLAB
function block in your system as explained in the section "Change PassThrough to a MATLAB
Function Block."

See Also
Configuration | PassThrough | SerDes Designer

5-26

Customizing Datapath Building Blocks

More About
. “Implement Custom CTLE in SerDes Toolbox PassThrough Block” on page 5-28

5-27

5 customize SerDes Systems

Implement Custom CTLE in SerDes Toolbox PassThrough Block

This example shows how to customize a PassThrough Block in Simulink® to implement a CTLE
System Object™ with user defined AMI parameters. You can use this example as a guide for
modifying PassThrough blocks that leverage system objects. For more information on the purpose of
the PassThrough block and an example of using other Simulink library blocks within them, see
“Customizing Datapath Building Blocks” on page 5-14.

Create SerDes System in SerDes Designer App

In MATLAB®, type serdesDesigner to launch the SerDes Designer app. Place a PassThrough block

after the analog model in the receiver. Change the name of the PassThrough block from PT to
MyCTLE.

| SerDes System |

Tx Rx

— > oo > y—rmii;h%

AnalogOut Channel Analogin MyCTLE

Block Parameters Plots

MyCTLE (Pass Through)
Name: MyCTLE

Export the SerDes system to Simulink.

Configuration

Stimulus WaveOut | Waveln Tx WaveOut —hﬁaveln Analog Channel WaveOut B Waveln Rz WaveOut b

5-28

L=

Eye Diagram

Modify PassThrough Block to Implement CTLE

This example builds a custom replica of the CTLE bloc from SerDes Toolbox™. First modify the
contents of PassThrough block to reference a new system object and then implement and connect its
parameters. This addresses the time-domain (GetWave) function of the model. The Init code is then

Implement Custom CTLE in SerDes Toolbox PassThrough Block

In Pass Through Out —F'

updated to mirror the functionality of time-domain (GetWave) in the statistical analysis. This example
walks you through the whole process using serdes.CTLE System object.

Inside the Rx subsystem, look under mask of PassThrough block MyCTLE. Select the PassThrough
block, press Ctrl+U to open the Block Parameters dialog box of the MATLAB System, and change the
System object name from serdes.PassThrough to serdes.CTLE.

Block Parameters: PassThrough >
g
MATLAE System

Implement block using a System object. Specify the
class name.

Out System object name: | berdes.CTLE vl 3

PassThrough I::]:I
MNew -

Cancel Help

Click OK to save the changes, and you will see the block change from Pass Through to a CTLE:

"
Out

In YMode CTLE
ConfigSelect [»

Wi

ConfigSelect
PassThrough

Note: You can use your own custom System object as well. For example, if you wanted to create a
custom CTLE with a change in the adaptation algorithm:

1 Open the source code of serdes.CTLE.

2 Save a local copy of the source code in a directory.

3 Make the desired changes in the code.

4 Then reference the customized code with the MATLAB System.

To properly link the CTLE to the system-wide parameters SymbolTime and SampleInterval, you
need to set the CTLE to use these parameters as variables rather than hard-coded values. Otherwise
incorrect or unexpected values may be included in the simulation and result in invalid data. Double
click the PassThrough block that now points to the CTLE system object to open the Block parameters
dialog window. In the Advanced tab, set Symbol time (s) to SymbolTime and Sample interval (s)
to SampleInterval. Click OK to save the changes.

5-29

5 customize SerDes Systems

Block Parameters: PassThrough >
CTLE

Continuous Time Linear Equalizer (CTLE)
Source code

Main Advanced

Symbol time (s): |S',-'mbol'l'|me | :

Sample interval (s): sampleIntervall

Input Waveform Type: | P
[.!.‘.’.!.] samplelnterval 6.25E-12 Maodel Wo... |

Cancel Help Apply

Add AMI Parameters to PassThrough Block

Open the SerDes IBIS-AMI Manager dialog box. Under the Model Specific parameters in the
AMI-Rx tab, select the MyCTLE node and add two new parameters, CTLEMode and
CTLEConfigSelect.

To add CTLEMode parameter, click on the Add Parameter button and set the variables:

* Parameter name to CTLEMode

* Current value to 0

* Description to CTLE Mode: 0 = off, 1 = fixed, 2 = adapt
* Type to Integer

+ Format to Range

 Typto1l

* Minto0

* Maxto 2.

Press Ok to save the changes. You will see the parameter automatically added to the canvas:

5-30

Implement Custom CTLE in SerDes Toolbox PassThrough Block

Y.

In

Mode CTLE

Y.

ConfigSelect

ConfigSelect pr

Out

PassThrough

MyCTLEParameter.CLTEMode P

CLTEMode

To add CTLEConfigSelect parameter, select the MyCTLE node again, click on the Add Parameter

button and set the variables:

* Parameter name to CTLEConfigSelect

e Current value to 0

* Description to CTLE Config Select has a range from 0 to 8

+ Usage to InQut

* Type to Integer
+ Format to Range

e TyptoO
e Minto0
 Max to 8.

Press Ok to save the changes. Again, you will see the parameter automatically added to the canvas.

Implement AMI Parameters

Connect the blocks MyCTLEParameter.CTLEMode to the Mode input and
MyCTLESignal.CTLEConfigSelect read to the ConfigSelect input of the PassThrough block.
Connect the ConfigSelect output of the PassThrough block to the
MyCTLESignal.CTLEConfigSelect write block.

For more information, see “Managing AMI Parameters” on page 6-2.

(A)>—>»{m

In

MyCTLEParameter. CLTEMode

P Mode

CLTEMode

MyCTLESignal.CTLEConfigSelect

CTLEConfigSelect read

» ConfigSelect

out

CTLE

Qut

ConfigSelect

A

PassThrough

MyCTLESignal. CTLEConfigSelect

CTLEConfigSelect write

5-31

5 customize SerDes Systems

You can double-click on the blocks to confirm connectivity. For example double click on the block
MyCTLESignal.CTLEConfigSelect read to confirm connectivity of the Data Store Read:

@ Block Parameters: Data Store Read X

DataStoreRead

Read values from the specified data store. Use the 'Element Selection' tab to select specific elements to read. If you
do not select any elements, the entire data store is read.

Parameters Element Selection

Signals in the bus Selected element(s) Up
v MyCTLESignal iMyCTLESignal.CTLEConfigSelect % —
CTLEConfigSelect
Refresh Remove

Specify element(s) to select:

| MyCTLESignal.CTLEConfigSelect Select>>

2 Cancel Help Apply

This completes setup for the time-domain (GetWave) simulation.
Verify Code for Statistical Analysis

Double click the Init subsystem inside the Rx block to open the Block Parameter dialog box. To
connect the AMI parameters as connected within the MyCTLE block, click the Refresh Init button.
Since you used a system object, this connectivity is generated automatically. To verify this, click the
Show Init button to open the MATLAB code for Init subsystem. You should find code related to the
CTLE AMI parameter connections in the Custom user code area surrounded by the %% Begin and %
End statements.

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
MyCTLEInit.ConfigSelect = MyCILEParameter.CTLEConfigSelect: % User added AMI parameter from SerDes IBIS-2MI Manager
MyCTLEInit.Mode = MyCTLEParameter.CTLEMode; % User added AMI parameter from SerDes IBIS-AMI Manager

% END: Custom user code arca (retained when '"Refresh Init' button is pressed)

Verify Operation of Custom CTLE

Run the simulation.

5-32

Implement Custom CTLE in SerDes Toolbox PassThrough Block

Stat Analysis

Pulse Response

0.6 !
Unequalized
Equalized
0.4
=
02
|
D L
0 2 3 5
[s] x10°
Statistical Eye
0.5 e 107
— -
—
107
10710
Time Domain Analysis
Time Domain Eye o
0. i i 110

[Probability]

[Probability]

0.5

=

-0.5

Waveform Derived from Pulse Response

Unequalized
Equalized

f\“}" |‘\ || !' H"U' M‘ U“Mq\

0 0.2 0.4 0.6 0.8 1 1.2 1.4
[s] 1078
Statistical Metric | Data |
Ewe Height (V) 0.3053
Eye Width (ps) T2.6030
Eve Area (V*ps) 14 T4TF
COM 5.9500
WEC 6.0816

Tirme Domain Metric Data

Eye Height (W} 0.3300
Eye Width (p=s) 76.9533
Eve Area (V*ps) 16.5709
COM 6.7183
VEC £.3748
Winimum BER 5.2832e-04

5-33

5 customize SerDes Systems

4. Eye Diagram — O *

Eile Tools Wiew Help u

-l ik 2-a-|B|H-|Wd-| =

ik}
k|

=1

E

=

™

i
fid

To evaluate the effect of the CTLE on output waveforms, open the SerDes IBIS-AMI manager dialog
box. In the AMI-Rx tab, set Current value of CTLEMode* parameter to 1 to use fixed mode
operation, and set Current value of CTLEConfigSelect* parameter to 4. Re-run the simulation.

5-34

Implement Custom CTLE in SerDes Toolbox PassThrough Block

Stat Analysis
Pulse Response
06F
Unegqualized
Equalized
04t
=
0zt
0]
0 1 2 3 4 5
(5] w1078
Statistical E
04 - . A 510°
0.2
= 0 107"

0.2
-0.4 l | 110

0 20 40 60 80

[ps]
Time Domain Analysis
Time Domain Eye
de T T T Y T 1|’_“|CI
107
1072

-0.4 : : : : 1072

0 20 40 60 80

[Frobakbility]

[Frobakbility]

0.5

[v]

-0.5

Waveform Derived from Pulse Response

l] 1 F Unequalized
Equalized
ﬂ ‘ ‘ ‘ | ‘| T
| { i 1[|
UL U A
0 0.2 0.4 0.6 0.8 1 1.2 1.4
[s] x10°
Statistical Metric | Data |
Eye Height (V) 0.4335
Eye Width (ps) 921840
Eyve Area (V*ps) 26.1905
COM 16.3293
VEC 1.4382
Time Domain Metric Data
Eve Height (V) 0.4470
Eye Width (ps) 93.7503
Eve Area (V*ps) 273829
COM 18.0681
VEC 1.1589
Winimum BER 5.2632e-04

5-35

5 customize SerDes Systems

5-36

4. Eye Diagram — O *

Eile Tools VWiew Help
@-a/ oor®| - qaq-C B L-| s

k]
ki
T

E
=
m

i
fid

Ready

See Also
CTLE | Configuration | PassThrough | SerDes Designer

More About

. “Customizing Datapath Building Blocks” on page 5-14

. “Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes
Performance” on page 4-10

Step Response Based CTLE

Step Response Based CTLE

This example shows how to create a custom step response-based CTLE block in Simulink® to model
wired communication links of your own specifications. The custom CTLE block exhibits equivalent
behavior as the default pole/zero based CTLE block from the SerDes Toolbox™. This example also
illustrates:

* how to use the MATLAB function blocks to model custom algorithms in Simulink,
* how to include large data files into your model,

* how to create custom Initialization Subsystem algorithms to perform Init (impulse based)
optimization before the Simulink simulation starts, and

* how to validate the model using the Simulation Data Inspector.

The first time you call the step response-based CTLE, it loads a data table in the memory. The data
table contains a reference step response for each filter configuration. The CTLE resamples or
interpolates the step response to the simulation time step, differentiates the step to obtain the
impulse response, and then convolves this with the input waveform. It is easier to resample step
response than impulse response due to the difficulty of properly capturing the peak of an impulse
response.

Characterize CTLE with Step Responses

Typically, the data table with the reference step responses is obtained from circuit simulations. But
for this example, extract the step response from the default CTLE from the SerDes Toolbox to
characterize its behavior. It is important to ensure that the time step of the characterization data is
fine enough so that all relevant step response behavior is captured. Use 32 samples per symbol,
which results in a time step size of 3.125 ps and is more than sufficient for this CTLE.

Create a CTLE object with the default peaking characteristics.
SymbolTime = 100e-12;

SamplesPerSymbol = 32;
dt = SymbolTime/SamplesPerSymbol;

CTLE1l = serdes.CTLE(...

'SymbolTime',SymbolTime, ... %Duration of a single symbol
'Samplelnterval',dt,... %time step size
'DCGain',0:-1:-8,... %DC Gain

'PeakingGain',0:8, ... %Peaking Gain
'PeakingFrequency',5e9,... %Peaking Frequency
'Mode',1); %Mode is fixed

For each configuration of the CTLE, stimulate the CTLE with an ideal step response excitation to
extract the reference CTLE step responses and observe the output waveforms.

stimulus = ones(25*SamplesPerSymbol,1);
stimulus(1:SamplesPerSymbol) = 0;

number0fConfig = CTLE1l.ConfigCount;
stepResponse = zeros(length(stimulus),numberOfConfig);
for ii = 1l:numberOfConfig

CTLEl.ConfigSelect = ii-1;
release(CTLEl);

5-37

5 customize SerDes Systems

5-38

stepResponse(:,1ii) = CTLE1l(stimulus);
end

tl = dt*(0:size(stepResponse,l)-1);

figure,

plot(tl,stepResponse)

xlabel('time [s]'),ylabel('[V]")

title('CTLE Step responses')
legend(cellstr(num2str((0: (number0fConfig-1))"')))

grid on
CTLE Step responses
1.2 T T T T
0
—1
1k 2|4
3
4
5
0.8 & 7
71
8
=06 i
0.4 r - 7
|
0.2r 7
D 1 1 1 1
0 0.5 1 1.5 2 2.5
time [s] %107

Finally save the matrix of step responses, 'stepResponse’, and the sample interval, 'dt', to a .mat file.
Observe that each column of the matrix represents a different CTLE configuration. This example uses
the filename 'myCTLEdata.mat' for the data. If you change the file name, then you also need to
manually update the file references in the stepCTLE.m function and the Simulink Initialize Subsystem
references.

If you already have your own CTLE behavior recorded from circuit simulations, you can put the data
into the same file format as below, with the fields 'stepResponse' and 'dt' equivalently set. If your own
CTLE is characterized by impulse responses, you can use the function impulse2step to first convert
them to step responses.

Create the reference data file.

save('myCTLEdata.mat', 'stepResponse', 'dt')

Step Response Based CTLE

Create SerDes System Model

Use the SerDes Designer App to create a receiver model with a Pass Through and a CTLE block. This
setup allows for a straightforward validation process to show that the step response based CTLE has
the same behavior as the pole/zero based CTLE.

Open the SerDes Designer app.

>> serdesDesigner

Add a Passthrough block and rename it to 'StepCTLE'

Add a CTLE block.

Tx Rx
Pass-
.—[I>v J——[CharnelJ——[D’ }— Throtgh —[CTLE
AnalogQut Channel Analogin StepCTLE CTLE

Select the Channel block to open its Block Parameters dialog box. Include crosstalk by selecting
Enable Crosstalk parameter. Having crosstalk enabled ensures that the impulse response matrix
input to Init will have multiple columns during testing and so any custom Init code will need to
correctly process multi-dimensional arrays. Ensuring proper behavior here will avoid later issues
when the model is exported to IBIS-AMI.

Export the SerDes system to Simulink.
Setup Simulink Model

Modify the Simulink model to include the MATLAB function block and parameters to control the
custom CTLE block. Open the Block Parameters dialog box for the Configuration block, then click on
the Open SerDes IBIS-AMI Manager button and select the AMI-Rx tab. Under the Model Specific
parameter, select StepCTLE and click the Add Parameter... button. In the newly opened window, set
Parameter name to Mode, Usage to In, Type to Integer, Format to List, List values to [2 0 1], and
List Tip values to ["adapt" "off" "fixed"].

Select StepCTLE under the Model Specific parameter again and click the Add Parameter... button. In
the newly opened window, set Parameter name to ConfigSelect, Usage to InOut, Type to Integer,
Format to List, and List valuesto[012 3456 7 8].

With the inclusion of the above parameters, the Simulink model view shows the StepCTLE subsystem
in the StepCTLE window.

Add a MATLAB Function block to the StepCTLE subsystem and open it.

Copy the contents of the file stepCTLE.m in the MATLAB Function block.

5-39

5 customize SerDes Systems

5-40

From the MATLAB toolstrip, click the Edit Data button in the Editor tab to open the Ports and Data
Manager dialog box. Select the Samplelnterval parameter. In the General tab, change Scope from
Input to Parameter and click the Apply button.

stepCTLE Function
The stepCTLE function has two primary behaviors:

» It loads the step response data, resamples it according to the simulation sample interval, and
differentiates the step response to obtain the impulse response.

» It filters (or convolves) the incoming waveform with the impulse response.

The first primary behavior is essential so that the stepCTLE has consistent behavior over changes in
the simulation time step size.

Persistent Variables

Observe that this function utilizes persistent variables. Persistent variables have permanent storage
in MATLAB similar to global variables. But unlike global variables, persistent variables are known
only to the function that declares them. In a Simulink model, each MATLAB function block contains
its own copy of persistent data. If a MATLAB function that contains a persistent variable is called
from two different blocks, the model has two persistent variables. Also, each run of the simulation
creates a new copy of the persistent data.

Using coder.load to Including Data Files into Model

Observe the use of the coder.load function instead of the 'load' function to access the data in the .mat
file. When this code is compiled, the data in the .mat file will be hard coded into the executable and is
an excellent way of including large data files into the model.

Connectivity

From Simulink, connect the parameter blocks to the MATLAB function block. Delete the ConfigSelect
write block as it will not be used. Also delete the Pass Through System object block.

Add a display block from the Simulink Library Browser to observe the adapted value of ConfigSelect
parameter. To observe the adapted ConfigSelect parameter of the SerDes Toolbox CTLE, also add a
display block under the CTLE mask. You can then verify that both blocks adapt to the same
configuration select.

https://www.mathworks.com/help/matlab/ref/persistent.html
https://www.mathworks.com/help/coder/ref/coder.load.html

Step Response Based CTLE

D

u plu
StepCTLEParameter.Mode P! Mode 4 y
stepCTLE Out
Mode —— | ConfigSelect

StepCTLESignal.ConfigSelect o

ConfigSelect read
]

Display

Setup Init

The SerDes Simulink model can perform Init (impulse-based) analysis before the zero simulation time
with the Initialize Subsystem block. Open the Init block in the Rx subsystem. Click the Refresh Init
button and then the Show Init button to bring up the MATLAB Editor. Disregard any warning
messages about refresh Init skipping the MATLAB Function block.

Cut and paste the contents of CustomUserCodeForInit.m in the custom user code area of the Init
function.

Observe that like in the stepCTLE function, this code loads the step response data file, then
resamples it and converts to impulse responses. This code additionally performs optimization to
select which of the many CTLE configurations 'best' equalizes the signal using the SNR metric as the
goodness criteria. Once the ConfigSelect has been determined, the CTLE response is applied to the
primary impulse and crosstalk impulse responses.

An alternative to using MATLAB function blocks is to use System Objects. System objects do not
require the use of persistent variables (which are not currently allowed in the Initialize Subsystem
block) and allow for better code sharing between the Simulink model version of a block and the
Initialize subsystem version of the block like many of the System objects in the SerDes Toolbox.

Validation

To validate that the step response based CTLE is equivalent to the default CTLE from the SerDes
Toolbox, log the output waveform and perform two simulations:

* Enable the step based CTLE and disable the pole/zero based CTLE
* Disable the step based CTLE and enable the pole/zero based CTLE

The top level output waveform of the model is already logged (as shown by the broadcast or wifi
symbol) for use by the post-simulation analysis results.

5-41

https://www.mathworks.com/help/matlab/matlab_prog/what-are-system-objects.html

5 customize SerDes Systems

5-42

B}
- Waveln Rx WaveOut f—— $

Eye Diagram

Open the SerDes IBIS-AMI Manager dialog box from Configuration block. Set the Mode of the pole/
zero based CTLE's to off. Set the Mode of the step based CTLE to adapt and run the simulation.

Then set the Mode of the pole/zero based CTLE's to adapt. Set the Mode of the step based CTLE to
off and rerun the simulation

From the Simulink toolstrip, click the Data Inspector button from the Simulation tab. Change the line
color of the most recent simulation results and zoom in on the first few symbols of the simulation.
Observe how the only difference between the waveforms is a one symbol delay thus validating the
accuracy of the step response based CTLE. The one symbol-time delay is due to the step response
characterization data and while this can be removed, it doesn't make a large impact on SerDes
simulations or analysis.

Step Response Based CTLE

4 Simulation Data Inspector - untitled”

Q 4)

Inspect Compare
Filter Signals
NAME LINE
~ Run 9: test2 [Current] o

ap DR

a
¥

ORI 20 ANl

Archive (1) [-
~ Run 8: test2 []
| mout —

Properties A

W xOut m rxOut

0.20 4

0.25 4

0.20 4

0.15 4

0.10 4

0.05 4

0.10 4

0154

020 4

0.25 4

0.20 4

2.40e0

260e-0

280e8 3.00e8 320e8 3408 260e8 380ed 400eD 420e8 440e8 4800 4800 5000

5-43

Customize IBIS-AMI Models

* “Managing AMI Parameters” on page 6-2
* “Design IBIS-AMI Models to Support Clock Forwarding” on page 6-17

6 Customize IBIS-AMI Models

Managing AMI Parameters

This example shows how to add, delete, modify, rename and hide AMI parameters for an IBIS-AMI
model built with SerDes Toolbox. These AMI parameters are then available to be used with existing
datapath blocks, user-created MATLAB function blocks or optimization control loop, and can be
passed to or returned from the AMI model executables (DLLs) created by SerDes Toolbox.

Example Setup

This example will be adding a new InOut Parameter 'Count' alongside the Pass-through datapath
block. This parameter will count the number of passes through AMI Init (which should be 1), then
pass the result to AMI GetWave where it will continue to count the total number of passes. While this
may not be especially useful functionality for AMI model development, it will serve to demonstrate
how new AMI parameters are added and used during model generation.

Inspect the Model

This example starts with a simple receiver model that only uses a pass-through block.

open_system('serdes add param.slx')

Configuration

Stimulus. WaveOut] Waveln Tx WaveOut———®|Waveln Analog Channel WaveOut P Waveln Rx WaveOut L

|

6-2

Eye Diagram

Caopyright 2018 The MathWorks, Inc.

This Simulink SerDes System consists of Configuration, Stimulus, Tx, Analog Channel and Rx blocks.

* The Tx subsystem has the FFE datapath block to model the time domain portion of the AMI model
and an Init block to model the statistical portion. The Tx subsystem will not be used in this
example.

* The Analog Channel block has the parameter values for Target frequency, Loss, Impedance and
Tx/Rx analog model parameters.

* The Rx subsystem has the Pass-Through datapath block and an Init block to model the statistical
portion of the AMI model.
Run the Model

Run the model to verify that the base configuration is working as expected before editing. Two plots
are generated. The first is a live time domain (GetWave) eye diagram that is updated as the model is
running.

Managing AMI Parameters

4. Eye Diagram
File Tools VWiew Help
@-aor® =& L H-|id-|H

k]
=
=1

=
=
™

o
F

The second plot contains views of the results from statistical (Init) and time domain (GetWave)
simulation.

6-3

6 Customize IBIS-AMI Models

4| Init Statistical and Time Domain Analysis Results — O
Eile Edit ¥iew [Insert Tools Desktop Window Help

Udde @ 0B LE

Stat Analysis

Pulse Response

Waveform Derived fro#, 2 {=|{" & C {7}

06 ;] 0.
Uncqgalizcd i (((i I'T f Uncqqalizcd
Equalized [| ‘ | l‘ 1‘" I Equalized
0.4 1 | | | !h ‘ [
=T {1 GIN
IQ:JI”'- I'Iﬁ. [iy e
0o — 0.5
0 1 2 3 4 5 0 0.2 0.4 0.6 0.8 1 1.2 1.4
(s] <10® [s] <107%
- Statistical Eye a Statistical Metric Data
05 - 10 Eye Height (V) 0.3053
Eye Width (ps) 72.6030
= Eye Area (V*ps) 14,7474
% COM 5.9607
fé WEC 6.0809
=
0 20 40 60 80
[ps]
Time Domain Analysis
. Time Domain Eye 0 Tirne Domain Metric Data
G5 ' ' ' 10 Eye Height (V) 0.0885
Eve Width (ps) 511722
E Eye Area (V*ps) 6.9898
= % COM 1.3592
= ieﬁ VEC 16.7812
o Minimum BER 5.0000e-04
) 1 : . : ;
0 20 40 60 80
[Ps]

How to Add a new Parameter

Open the Block Parameter dialog box for the Configuration block, then click on the Open SerDes
IBIS-AMI Manager button and select the AMI-Rx tab.

1. Highlight the PT datapath block and press Add Parameter...
2. Change the Parameter Name to: Count

3. Verify that the Current value is set to 0 (this will be the starting point for our count).

6-4

Managing AMI Parameters

4. In the Description, type: Starting value of iteration count.
There are four possible values for Usage:

* In: These parameters are required inputs to the AMI Executable.

* Qut: These parameters are output from the AMI Init and/or AMI GetWave functions and returned
to the EDA tool.

* InOut: These parameters are required inputs to the AMI Executable and can also return values
from AMI Init and/or AMI GetWave to the EDA tool.

* Info: These parameters are information for the User and/or the simulation tool and are not used
by the model.

5. Set the Usage to: InOut
There are six possible parameter Types:

* Float: A floating point number.

* Integer: Integer numbers without a fractional or decimal component.
* UI: Unit Interval (the inverse of the data rate frequency).

* Tap: A floating point number for use by Tx FFE and Rx DFE delay lines.
* Boolean: True and False values, without quotation marks.

* String: A sequence of ASCII characters enclosed in quotation marks.

6. Set the Type to: Integer
There are three possible parameter Formats:

* Value: A single data value.

List: A discrete set of values from which the user may select one value.
Range: A continuous range for which the user may select any value between Min and Max.

7. Set the Format to: Value

8. Click OK to create the new parameter, then you will see the new blocks automatically placed on
the canvas.

Accessing a new Parameter from the Initialize Function

New parameters are accessed from the Initialize function (for statistical analysis) through the
impulseEqualization MATLAB function block. This example has added an InOut parameter. To use the
new InOut Parameter 'Count' in AMI Init:

1. Inside the Rx subsystem, double click on the Init block to open the mask.
2. Press the Refresh Init button to propagate the new AMI parameter(s) to the initialize subsystem.
3. Click OK to close the mask.

4. Click on the Init block again and type Ctrl-U to look under the Init mask, then double-click on the
initialize block to open the Initialize Function.

The impulseEqualization MATLAB function block is an automatically generated function which
provides the impulse response processing of the SerDes system block (IBIS-AMI Init).

6 Customize IBIS-AMI Models

Note that the new Count parameter has been automatically added as an output of this MATLAB
function as a Data Store Write block. No Data Store Read is required because the input parameters
are passed in as a PTSignal Simulink.Parameter.

©

Event Listener

4,—’ ImpulseMatrix
ImpulseOut _

ImpulseMatrix P Impulseln

RxImpulseQOut

6-6

RxImpulseln

impulseEqualization ’—> PTSignal.Count

PTCount PTCOUHt

5. Double-click on the impulseEqualization MATLAB function block to open the function in
MATLAB. The '%% BEGIN:' and '% END:' lines within this function block denote the section where
custom user code can be entered. Data in this section will not get over-written when Refresh Init is
run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

When Refresh Init was run, it added our new parameter to the Custom user code area so that it can
be used as needed:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
PTCount = PTParameter.Count; % User added AMI parameter from SerDes IBIS-AMI Manager
% END: Custom user code area (retained when 'Refresh Init' button is pressed)

6. To add our custom code, scroll down to the Custom user code section, then enter PTCount =
PTCount + 1; The Custom user code section should look like this:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
PTCount = PTParameter.Count; % User added AMI parameter from SerDes IBIS-AMI Manager
PTCount = PTCount + 1; % Count each iteration through this function.

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

7. Save the updated MATLAB function, then run the Simulink project to test the new code. Using the
Simulation Data Inspector, verify that the value of Count after Init is now '1'.

Note that the final value for Count was written to the PTSignal data store so that it is now available in
AMI GetWave.

Managing AMI Parameters

How Usage affects Parameters in Init

Depending on what Usage was selected, parameters show up in the Custom User code area of the
impulseEqualization MATLAB function block in different ways:

Info Parameters

Info parameters are informational for the user or simulation tool and are not passed to, or used by the
model, therefore they will not show up in the Initialize code.

In Parameters

In parameters are Simulink.Parameter objects that show up as a constant that can be used as needed.
For example, an In parameter named 'InParam' that was added to the VGA block would show up as
follows:

VGAParameter.InParam; % User added AMI parameter from SerDes IBIS-AMI Manager
Out Parameters

Out parameters are Simulink.Signal objects that show up as a parameter with the initial value defined
in the IBIS-AMI Manager. For example, an Out parameter named 'OutParam' that was added to the
VGA block with a current value of '2' would show up as follows:

VGAQutParam=2; % User added AMI parameter from SerDes IBIS-AMI Manager

Output parameters use a Data Store Write block to store values for passing out of Init to the EDA tool
(via the AMI Parameters Out string) and for use in GetWave (if desired). In the above example, a
Data Store Write block named 'OutParam' was automatically added to the Initialize Function:

InOut Parameters

InOut parameters use both a Simulink.Parameter object and a Simulink.Signal object. For example,
an InOut parameter named 'InOutParam' that was added to the VGA block would show up as follows:

VGAInOutParam = VGAParameter.InQutParam; % User added AMI parameter from SerDes IBIS-AMI Manager

The Input value is accessed by using the Simulink.Parameter reference VGAParameter.InOutParam,
while the output value uses a Data Store Write block to store values. In the above example, a Data
Store Write block named 'InOutParam' was automatically added to the Initialize Function for passing
values out of Init to the EDA tool (via the AMI Parameters Out string) and for use in GetWave (if
desired):

6 Customize IBIS-AMI Models

Accessing a new Parameter from the GetWave Function

New parameters are automatically created as blocks of type Constant, Data Store Read or Data Store
Write and added to the canvas of a datapath block. This example has added an InOut parameter. To
use the new InOut Parameter 'Count' in GetWave:

1. Inside the Rx subsystem, click on the Pass-Through datapath block and type Ctrl-U to look under
the Pass-Through mask.

D1

D1
In Pass Through Out

6-8

PassThrough

2. Add a Simulink/Math Operations Sum block to the canvas.
3. Add a Simulink/Sources Constant block to the canvas and set the value to 1.

4. Wire up each of the elements so that the Pass Through block now looks like the following:

D1 D1
In Pass Through Out
In Out
PassThrough
PTSignal.Count PTSignal.Count
Count read Count write

7. Save, then run the Simulink project to test the new code.

By adding Value Labels to the output port of the Sum block, see that the value of Count after GetWave
is 3.2e+04 (Samples Per Symbol * Number of symbols). After generating AMI model executables, the
value of Count will be available in the Parameters out string in an AMI simulator.

Managing AMI Parameters

How Usage affects Parameters in GetWave

New parameters are accessed from the GetWave function in different ways, depending on what Usage
was selected.

Info Parameters
Info parameters are informational for the user or simulation tool and cannot be used by the model.
In Parameters

In parameters are Simulink.Parameter objects that are used by adding a Constant block. For example,
an In parameter named 'InParam' that was added to the Rx VGA block can be accessed by any of the
Rx blocks by adding a Constant block like this:

VEAParameter.InParam F---mmem--- %

Constant

For more information, see “Customizing SerDes Toolbox Datapath Control Signals” on page 5-2.
Out Parameters

Out parameters are Simulink.Signal objects that use a Data Store Write block to store values for
passing out of GetWave to the EDA tool (via the AMI Parameters Out string) or to other Rx blocks.
For example, an Out parameter named 'OutParam' that was added to the Rx VGA block can be written
to with a Data Store Write block like this:

e > WGASIgnal OutPararm

InOut Parameters

InOut parameters use both a Simulink.Parameter object and a Simulink.Signal object. The Input value
can be accessed with either a constant block or with a Data Store Read block, while the output value
uses a Data Store Write block to store values for passing out of GetWave to the EDA tool (via the

AMI Parameters Out string) or to other Rx blocks. For example, if an InOut parameter named
'InOutParam' is added to the Rx VGA block, the initial Input value can be accessed by any Rx block by
adding a Constant block like this:

VEAParameter. InOutParam I __________ %

Constant

Alternately, the updated Input value can be accessed with a Data Store Read block like this:

6-9

6 Customize IBIS-AMI Models

6-10

VGASignal.InOutParam F---------- %
Data Store
Read

The output value can be written to with a Data Store Write block like this:

JeCEEEEEE > WGASignal.InOutParam

WA e

How to Rename a Parameter

The parameters used by the SerDes Toolbox built-in System Objects can be modified or hidden but
cannot be renamed.

User generated AMI parameters are renamed as follows.
Update the AMI Parameters

1. Open the Block Parameter dialog box for the Configuration block, then click on the Open SerDes
IBIS-AMI Manager button.

2. Go to either the AMI-Tx or AMI-Rx tab where the parameter resides.

3. Highlight the parameter to be renamed and press Edit...

4. In the Parameter name field, changed the name as desired.

5. Click OK, then you will see the new parameters automatically renamed on the canvas.
Update Init

1. Push into either the Tx or Rx subsystem block where the parameter is used.

2. Double click on the Init block to open the mask.

3. Press the Refresh Init button to propagate the AMI parameter name change to the initialize
subsystem.

4. Click OK to close the mask.

5. Click on the Init block again and type Ctrl-U to look under the Init mask, then double-click on the
initialize block to open the Initialize Function.

6. Double-click on the impulseEqualization MATLAB function block to open the function in
MATLAB.

7. Scroll down to the section titled:

Managing AMI Parameters

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
8. You can confirm all instances of the parameter have been renamed.

9. Save and close the MATLAB function block.

Update GetWave

Push into each datapath block where the renamed parameter was used and rename each instance of
the parameter.

Verify Results
Run a simulation to verify that the project still operates with no errors or warnings.
How to Delete a Parameter

The parameters used by the SerDes Toolbox built-in System Objects can be modified or hidden but
cannot be deleted.

User generated AMI parameters are deleted as follows.
Update the AMI Parameters

1. Open the Block Parameter dialog box for the Configuration block, then click on the Open SerDes
IBIS-AMI Manager button.

2. Go to either the AMI-Tx or AMI-Rx tab where the parameter resides.

3. Highlight the parameter to be deleted and press Delete Parameter.

4. You will see the paramter blocks automatically removed from the canvas.
Update Init

Note: Parameters in the custom user code area are not automatically removed, so you will comment
or delete them with the following steps:

1. Push into either the Tx or Rx subsystem block where the parameter was used.
2. Double click on the Init block to open the mask.

3. Press the Refresh Init button to remove any deleted Out or InOut parameter Data Stores from the
initialize subsystem.

4. Click OK to close the mask.
5. Click on the Init block again and type Ctrl-U to look under the Init mask
6. Double-click on the initialize block to open the Initialize Function.

7. Double-click on the impulseEqualization MATLAB function block to open the function in
MATLAB.

8. Scroll down to the section titled:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)

6-11

6 Customize IBIS-AMI Models

9. Delete or comment out all instances of the removed parameter.

10. Save and close the MATLAB function block.

Update GetWave

Push into each datapath block where the removed parameter was used and delete each instance of

the parameter.

Verify Results

Run a simulation to verify that the project still operates with no errors or warnings.

How to Hide a Parameter

There may be times when a parameter is required for model functionality, but needs to be hidden
from the user. For example, to keep a user from changing the FFE mode, edit the FFE mode

parameter and check the "Hidden" checkbox.

Parent Mode | FFE

Parameter name | Mode

Current value | fixed L

Description
FFE Mode: O=off, 1=fixed

Usage
Type

Format List r
List Format details

Default | 1
List values | [1 0]

List_Tip values | ['fixed” "off’]

+' | Hidden

4\ SerDes IBIS-AMI Manager - Add/Edit AMI Parameter

it

Cancel

6-12

Managing AMI Parameters

This will prevent this parameter from being present in the .ami file - effectively hardcoding the
parameter to its default value. In other words, the FFE mode parameter is still present in the code so
that the FFE continues to work as expected, but the user can no longer change the value.

To hide a parameter from both Init and GetWave:
1. Open the mask by double-clicking on the datapath block of interest.

2. Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

3. Deselect the parameter(s) to be hidden.
A few things to keep in mind about hiding parameters:
* When hiding parameters, verify that the current parameter value(s) are correct. The current value

will now always be used as the default value for that parameter.

* Hiding a parameter has no effect on the model executable. It only removes the parameter from the
generated .ami file.

» If the hidden parameter is of type Out or InOut, it will still show up in the AMI Parameters Out
string of the model executable.

How to Modify a Parameter

All the parameters used in SerDes Toolbox are modified via the SerDes IBIS-AMI Manager dialog by
using the Edit... button. However, the parameter values that can be modified vary depending on
which type of parameters they are.

For the built-in System Objects, only the following fields can be modified:

* Current Value

* Description

* Format

* Default

+ List values (for Format List)

+ Typ/Min/Max values (for Format Range)

For the user defined parameters all fields can be modified.
Add Reserved Parameters for Jitter, Analog Buffer Modeling, and Data Management
Reserved AMI parameters include:

+ Jitter and noise parameters such as Tx Rj, Tx Dj, Tx DCD, Rx Rj, Rx Dj, Rx DCD,
Rx GausianNoise, and others
* Analog buffer modeling parameters such as Ts4file, TX V, and RX R

* Data management using DLL_ID
These are post-processing parameters that are used by an IBIS-AMI compliant simulator to modify

the simulation results accordingly. These parameters are added via the SerDes IBIS-AMI Manager
dialog by using the Reserved Parameters... button on the AMI-Tx or AMI-Rx tabs.

6-13

6 Customize IBIS-AMI Models

6-14

Note: The reserved parameter AMI_Version will automatically change to 7.0 if any IBIS 7.0 reserved
parameters are enabled in the IBIS-AMI Manager.

For example, to add Rx Receiver Sensitivity and Rx Dj to a receiver .ami file, click the Reserved
Parameters... button to bring up the Rx Add/Remove Jitter&Noise dialog, select the
Rx_Receiver_Sensitivity and Rx_Dj boxes, then click OK to add these parameters to the Reserved
Parameters section of the Rx AMI file.

To set the values for these two new parameters:

* Select Rx_Receiver_Sensitivity, then click the Edit... button to open the Add/Edit AMI
Parameter dialog.

* Set the Current Value to 0.04

* Change the Format to Value.

* Click OK to save the changes.

» Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.

* Set the Current Value to 0.0

* Change the Type to UI.

* Change the Format to Range.

» Set the Typ value to 0.05

* Set the Min value to 0.0

* Set the Max value to 0.1

* Click OK to save the changes.

These two parameters will appear in the Reserved Parameters section of the .ami file as shown:
(Rx Receiver Sensitivity (Usage Info)(Type Float) (Value 0.04))
(Rx Dj (Usage Info) (Type UI) (Range 0.05 0.0 0.01))

For another example, you can use Touchstone files (also known as SnP files) to customize analog
buffer modeling of a transmitter or receiver. This option can be enabled using the reserved parameter
Ts4file in the IBIS AMI Manager.

Managing AMI Parameters

4 Add/Remove — O >

| Al | | HNone |

Jitter&MNoise

[]Rx_DCD

[|Rx_Rj

] Rx_Dj

[|Rx_Sj

[|Rx_Clock_Recovery_Mean
[] Rx_Clock_Recovery_Rj

[| Rx_Clock_Recovery_Dj

[|Rx_Clock_Recovery_Sj

[| Rx_Clock_Recovery_DCD
| | R#_Receiver_Sensitivity

[|Rx_GausianMoise

[R#_UniformMoise

Analog Buffer Modeling
|| Te4file
[JRx R

Data Management
[oLL_ID

| OK || Cancel |

When you click the Export button in the IBIS AMI Manager, a dialog will appear where you can
select the s-parameter files for each process-corner model to support the reserved parameter Ts4file.

6-15

6 Customize IBIS-AMI Models

Select the file for the typical parameter value of the Rx model
&« v A » ThisPC » Data(D:) » Projects » ibis v O Search ibis L
Organize - Mew folder = O @
; ~ MName Date modified Type Size
|j f_corner.sdp 8/30/2019 12:26 PM S4P File
J’ |:| s_corner.sdp 8/30/201912:26 PM S4P File
= |j t_corner.sdp 8/30/2019 12:26 PM S4P File
- Mo preview available,
=
=
= £ >
File name: |t_cormer.sdp v| 4-port Touchstone file (*.sdp)

6-16

For more information on IBIS reserved parameters see the IBIS specification.

References

IBIS 7.0 Specification

See Also
FFE | PassThrough | SerDes Designer

More About

. “Customizing SerDes Toolbox Datapath Control Signals” on page 5-2

https://ibis.org/ver7.0/ver7_0.pdf

Design IBIS-AMI Models to Support Clock Forwarding

Design IBIS-AMI Models to Support Clock Forwarding

This example shows how to create Rx AMI models that support clock forwarding as defined in the
IBIS Buffer Issue Resolution Document (BIRD) 204 by modifying the library blocks in SerDes
Toolbox™. This example will use a DDR5 write transfer (Controller to SDRAM) to demonstrate the
setup.

Background

IBIS BIRD 204, DQ DQS GetWave Flow for Clock Forwarding Modeling, adds the ability pass in an
external clock signal, either as a waveform or clock-times, to a data IBIS-AMI receiver GetWave
model, using the clock times pointer defined by the IBIS specification. A new AMI Reserved
Parameter, Rx_Use_Clock_Input, is used to enable this functionality. Note that while BIRD 204 has
been accepted by the IBIS committee, it is not yet part of the released IBIS specification.

The figure below shows a typical DDR5 coupled channel simulation setup using clock-forwarding. The
clock times or waveform generated by DQSO is passed to DQ[7:0] using the DQ DLLs clock times
pointer. The DQ DLL then operates on these clock times as desired (for example triggering DFE taps,
modelling the DQS delay tree or centering the DQ on the DQS waveform) and then passes out the
same or modified clock times as usual. This same process is repeated for DQS1 and DQ[8:15].

6-17

6 Customize IBIS-AMI Models

o] > 2 O 1

clock _times
DQS0 DQS0 @ @JH
[DQS TxDLL }—uE) i DQS RxDLL |

L

®

clock_tomes

DQ7 DQ7 :\@ :
meTeor}— > 22 & R

Channel

8 DQs
> P s
i { clock tmoes

' DQs1 DOt 1 () ©
| DQS TxDLL }—-E} >—; DQS Rx DLL 2

DQ13 DQ15 ‘:\\@ l
v

®

h i

r

DO EFEx [—*
clock_ tomes

|

Step 1: compute analog channel output according to TBIS 5.1-7 .0 (crosstalk taken into account)
Step 2: compute output of all DQS Ex DLLs according to IBIS 5.1-7.0

Use etther DQS Ex clock times or wave output values as DQ Rx clock times input vahes
Step 3: compute output of all DQ Rx DLLs

This example provides an introduction to clock-forwarding in SerDes Toolbox and show how to use
various Simulink® tools and MATLAB® functions to generate and test an IBIS-AMI executable that
supports clock-forwarding. It does not provide a specific clock-forwarding algorithm.

Rx IBIS-AMI Model Setup in Simulink

To begin, load the clock forwarding Simulink model and review the model setup. Start by typing the
following command:

>> open_system('clock forward.slx')

This will bring up the following SerDes system:

6-18

Design IBIS-AMI Models to Support Clock Forwarding

Cenfiguration

Strobe Clock Times Generator

Slimulus WaveOul ——# Wave:ln Tx Wavelh L 4’]‘;‘.’;1.-1.:[-: Analog Chanmed WaveOul ——— Wavaln Ex Wiavatiul
L

Eye Diagram

Review Simulink Model Setup

In addition to the normal SerDes Configuration, Stimulus, Tx, Analog Channel and Rx blocks, this
Simulink SerDes system adds a new Strobe Clock Times Generator block. The setup of each of these
blocks will be reviewed below.

Configuration Block

* Symbol Time is set to 200. 0 ps (5.0Gbps)

* Target BER is set to 1e-16.

* Signaling is set to Single-ended.

* Samples per Symbol and Modulation are kept at default values, which are 16 and NRZ
(nonreturn to zero), respectively.

Stimulus Block

* The Stimulus block is set to default values.

Tx Block

The Tx block uses a single FFE with 5 taps. Since this example is focused on the Rx model, the Tx
block will be untouched.

Analog Channel Block

* Channel loss is set to 5 dB, which is typical of DDR channels.
* Single-ended impedance is set to 40 ohms.
* Target Frequency is set to 2.5 GHz, which is the Nyquist frequency for 5.0 GHz

* The Tx Analog model is set up so that Voltage is 1.1V, Rise time is 10 ps, R (output resistance)
is 50 ohms, and C (capacitance) is 0.65pF.

* The Rx Analog model is set up so that R (input resistance) is 40 ohms and C (capacitance) is
0.65pF.
Rx Block

The single Rx block is a pass-through block that consists of a DFE System Object, a CDR MATLAB
function block and a Clock Times block. The DFE block is set up for four DFE taps by including four
Initial tap weights set to 0. The Minimum tap value issetto [-0.2 -0.075 -0.06 -0.045]V,
and the Maximum tap value is setto [0.05 0.075 0.06 0.045] V.

Per BIRD 204 the clock times received by a clock-forwarding data receiver are used directly,
therefore there no clock recovery is required. In place of the CDR, a MATLAB function block named

6-19

6 Customize IBIS-AMI Models

forwardCDR is used to pass the clock times to the DFE, which signals when to apply the DFE taps. In
addition, this block passes the clock times, unchanged, to the IBIS-AMI clock times block to generate
the normal clock times for use by the EDA tool. The MATLAB function block can be copy-pasted from
this example into your own Simulink model.

The Clock Times block is a SerDes Toolbox library block which formats the clock-times generated by
the DFECDR, CDR or forwardCDR block for output to the EDA tool. This library block is available
from the Simulink Library Browser.

The DFE block is a custom SerDes Toolbox system object. It can be added to your own Simulink
model by adding a MATLAB System block and then pointing it to the DFE.m file included in this
example.

Strobe Clock Times Generator Sub-System (New)

The Strobe Clock Times Generator Block either reads a named clock stimulus pattern stored in the
Model Workspace or reads in an array of clock times named clockTicks which is also stored in the
Model Workspace. The mask for this sub-system is used to select which input to use and to set the
name of the external clock stimulus pattern.

Block Parameters: Strobe Clock Times Generator >

| WX, Enter Search String

Subsystem (mask)

Generate clock times from an external clock times array or waveform.

Select External Clock Times sets the current value for
Rx_Use_ Clock_Input.

Wawveform Mame is the Model Workspace parameter name containing
external waveform data.

Select External Clock Input

() None
® Times
) Waves

Waveform Name

SisoftLinkStimulus_ck

Cancel Help Apply

6-20

Design IBIS-AMI Models to Support Clock Forwarding

The new Strobe Clock Times Generator Block is not yet included in the SerDes Toolbox library. You
can add this subsystem to a new Simulink model by copy-pasting it from this example. Pasting this
block into a new SerDes Toolbox model will also add the required Rx_Use_Clock_Input parameters

and ForwardClockOffset Simulink signal to the Model Workspace.

Run the Simulink Model

The Simulink model is ready to run. In order to make the effects of the clock location more visible,
the first DFE tap has been set to -0.1V and the DFE mode is set to Fixed. Press the run button to

launch the simulation.

As the simulation runs, the Time Domain eye diagram gets constantly updated:

ah

File Tools VWiew Help

@- S OP® | =-a-|E H-| |

]
=
a
&

Ready T=2e-07

After the simulation is complete, the Init Statistical and Time Domain Analysis Results plot becomes
available:

6-21

6 Customize IBIS-AMI Models

i" nit Statistical and Time Dormain Analysis Results - O
File Edit View Inset Tools Desktop Window Help
TSR TR e
Dcde @08 | L E
Stat Analysis
" Pulse Response Waveform Derived from Pulse Response
Tod T 4 VL)
Unequalized Unequalized
Equalized Equalized
I Il
— 0.5
&
0
0 1 2 3 4 5 1 15 2 2.9 3
[s] «108 (5] 108
Statistical Eye 0 Statistical Metric | Data |
gx 10 Eye Height (V) 0.6102
Eye Width (ps) 182.0313
E Eye Area (Vps) 28.4388
% COM 12.3135
= WEC 2.4099
o
Time Domain Analysis
Time Domain Eye 2 Time Domain Metric | Data |
10 Eye Height (V) 0.6347
Eye Width (ps) 156.2500
= Eye Area (W*ps) 727352
= é COM 14.3055
bey g WEC 1.8586
o Minimum BER 0.0011
Ignore Symbols 100
Total Symbols 1000
0 50 100 150
[ps]

Note that since clock-forwarding only affects the Time Domain results, the Statistical results does not

reflect the effects of clock-forwarding.

How to visualize results

To verify proper operation of clock-forwarding, plotting the resulting waveforms and/or clock-ticks
can be very helpful. Several signals have data logging turned on to enable the use of the Data
Inspector for plotting waveforms. To turn on additional data logging, right-click on any signal and
select Log Selected Signals.

6-22

Design IBIS-AMI Models to Support Clock Forwarding

0.5 4

0.4

0.2

0:2

0.1

-0.2 4

-0.3 4

0.4

-0.5

08 4

Plotting clock and data waveforms

After running a simulation open the Data Inspector by clicking on the -icon in the Simulink
Simulation tab. In the Data Inspector check the boxes for Stimulus:1 (the incoming stimulus
waveform, Red in the figure below) and for rxOut (the Rx data out waveform, blue in the figure
below). You should see that rising and falling edges of the external-clock waveform (Red) correspond
with the peaks of the data waveform (Blue). If they do not line up as expected, the offset can be
adjusted by using the clock offset (see Setting the clock offset on page 6-0).

() mE - » [= ra

® |88 E | W &-E- » A O i =
W Stimulus1:1 W rOut
™ | il ‘ﬁ.r

J]Ir
Hl M—_\.
‘J ' [

1R18aT 4A1AaT 4A19eT 1A0eT 1A7%a7 1A24a7 1R7AaT 1A?9a7 1AMaT 1AI7aT 41A%M=T 1AMaT 1AM 1RANaT

6-23

6 Customize IBIS-AMI Models

Plotting clock-ticks in and out

After running a simulation, in the Data Inspector check the boxes for Forward Clock Times:1 (the
external clock-times from the Clock Times Generator block) and clockTime (the clock-times being
passed out of the Rx model). When “Times” is selected as the external clock times, these two signals
are expected to be identical.

L

B Forward Clock Times:1 ® clockTime

1.80e-2 4

1.50e-8 4

1.40e-2 4

1.30e-8 4

1.20e-8 4

1.10e-2 4

1.00e-2 4

£.00=-0

2.00=-2 4

7.00e-0 4

5.00=-0

5.00e-9 4

4.00e-0

2.00e-0

1.00e-0 4

0 1.00e-8 20029 3.00=-8 4.00e-8 500s8 6.00e8 7.00=8 5.00e-8 0009 1.00=-8 1108 1.20s-8 1.30=-8 1408 1.50=-8 1.00=-8

Changing the data pattern

The Rx Data pattern is set using the Stimulus block of the SerDes system as usual. A PRBS pattern
can be selected, or a named stimulus pattern that lives in the model workspace can be used. The
current stimulus pattern is named SiSoftLinkStimulus dgq.

6-24

Design IBIS-AMI Models to Support Clock Forwarding

Changing the clock pattern

Two clock patterns are included in this Simulink model:

* SiSoftLinkStimulus ck: This is a periodic clock pattern generated by SiSoft Quantum SI™
(QSD)

* SiSoftLinkStimulus_dqgs: This is a DQS pattern with an 8-bit DDR burst followed by a 4-bit
static low.

To change this pattern, specify the desired pattern by name in the Strobe Clock Times Generator
mask.

To create a new pattern, see Creating a new clock pattern on page 6-0

Switching between an external waveform and clock ticks

Switching between using an external waveform to generate clock times to using an external clock
ticks array directly is accomplished by changing the value of the parameter Rx_Use_Clock _Input
from the Strobe Clock Times Generator mask. There are 3 options for External Clock Input:

* None: No clock-times will be input-to or output-from the Rx AMI model.

* Times: Use the external clock times given in the Model Workspace parameter clockTicks.

* Waves: Use the external clock waveform from the Waveform Name in the mask.

Creating a new clock waveform

Generating a new clock or strobe waveform for use in the Stimulus block inside the Strobe Clock
Times Generator is accomplished using SiSoft Quantum SI and the MATLAB support package SiSoft
Link™.

Here is an overview of the required steps. For detailed information on using SiSoft Link, see “SerDes
Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software” on page 3-3. For more
information on QSI, see www.sisoft.com. Note that if you have previously run SiSoft Link on this
Simulink model you can begin with step 3.

1 Start by using the SerDes IBIS-AMI Manager to export the Tx and Rx models. Make sure that the
IBIS file, AMI files and DLL files boxes are checked.
Use SiSoft Link to Create a new QSI project.

3 Inthe new QSI project, double-click on the Tx designator then press the I0 Stimulus button in
the Designator Element Properties dialog.

4 In the Stimuli dialog, press the New button to open the Stimulus Editor and create the desired
clock pattern.

5 When you are done creating a new stimulus, make sure the new named stimulus pattern is
selected in Designator Element Properties.

6 Use the Simulation Parameters dialog to set the desired Samples Per Bit, Record Start and
Record Bits values to capture the desired number of samples. Note: Number of samples =
Samples Per Bit * Record Bits

Run the QSI simulation to generate the new Stimulus pattern.

In SiSoft Link, using the Import from QSI section, select the proper simulation, make sure the
Update stimulus pattern box is checked, and press Import.

6-25

http://www.sisoft.com/

6 Customize IBIS-AMI Models

9 Back in Simulink, the new stimulus pattern will automatically be set in the top-level Stimulus
block. Change this pattern back to either PRBS or SiSoftLinkStimulus dq as was previously
set.

10 In the Stimulus block inside the Strobe Clock Times Generator, select the newly created stimulus
SiSoftLinkStimulus.

Note: The SiSoftLinkStimulus pattern is over-written each time this process is performed. To save a
named stimulus pattern, open the Model Explorer, browse to the Model Workspace and rename
SiSoftLinkStimulus to a new name. This re-named parameter is saved along with the rest of the
Simulink model.

Creating new clock ticks

Generating new clock ticks for use inside the Strobe Clock Times Generator is accomplished using
SiSoft Quantum SI and the MATLAB support package SiSoft Link.

Here is an overview of the required steps. For detailed information on using SiSoft Link, see “SerDes
Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software” on page 3-3. For more
information on QSI, see www.sisoft.com. Note that if you have previously run SiSoft Link on this
Simulink model you can begin with step 3.

1 Start by using the SerDes IBIS-AMI Manager to export the Tx and Rx models. Make sure that the
IBIS file, AMI files and DLL files boxes are checked.

2 Use SiSoft Link to Create a new QSI project.

In the new QSI project open the Simulation Parameters dialog and set the parameter Output
Clock Ticks to Yes.

Run the desired QSI simulation.

5 From the MATLAB command line, type the following to import the clock times out of your QSI
project and format them for use in Simulink:

%% Read the QSI generated clock ticks from a file
filename = '<path_to_qgsi_project>/<project_name>/interfaces/<interface_name>/pre_sims/<sheet_nam
csv = readmatrix(filename, 'Range','A7');

%% Format input
count csv(:,1)
clock csv(:,2)

%% Output clock ticks for Simulink
clockTicks = [count, clock];

Note: If you wish to save multiple clockTicks arrays, or switch between arrays, you need to update
the clockTicks parameter name in the clockTimesGen MATLAB function block inside the Strobe
Clock Times Generator sub-system.

Setting the clock offset

The Input AMI parameter ForwardClockOffset has been added to the DFEandCDR block. This
parameter is of type Integer, with a Default of 0 and a Range of 0 to 64. In the DFEandCDR block,
this parameter controls a Delay block which is used to delay the incoming clock times by up to 64
samples. Using the SerDes IBIS-AMI Manager you can use this delay to adjust the location of the
external clock with respect to the data waveform as desired.

For example, here is the time domain eye diagram with ForwardClockOffset set to 5:

6-26

http://www.sisoft.com/

Design IBIS-AMI Models to Support Clock Forwarding

ah

File Tools View Help u

@- =53 OP® | 2-a-|E H-| |

Ready T=2e-07

Note how the DFE taps are being applied in the center of the eye instead of at the edges of the eye.
With the delay set to 14, the DFE taps are being applied at the ideal location at the edge of the eye:

6-27

6 Customize IBIS-AMI Models

6-28

ah

File Tools View Help

@- =53 OP® | 2-a-|E H-| |

Hi

o

=

i
L

Ready

Note: Delay values less that 0 will have no effect on the resulting waveform.
Changing the current value of Rx_Use_Clock_Input

The operation of the clock forwarding is controlled by the reserved AMI parameter
Use_AMI_Clock_PDF. Changing the current value of this parameter is not supported by the SerDes
IBIS-AMI Manager, so all updates to the current value are done from the Strobe Clock Times
Generator mask using the Select External Clock Input radio buttons.

Note: If the IBIS-AMI Manager is already open, you may need to close and re-open for the changes to
be visible.

Generate Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model and generates IBIS-AMI
compliant model executables, IBIS and AMI files for the clock forwarding receiver.

Open the Block Parameter dialog box for the Configuration block and click on the Open SerDes
IBIS-AMI Manager button.

Required Keywords

The IBIS-AMI Reserved input parameter Rx_Use_Clock_Input is required for codegen to work
properly. If this parameter is not present in your model, while the model may codegen the clock-

forwarding properties will not be enabled.

Design IBIS-AMI Models to Support Clock Forwarding

Export Models
On the Export tab in the SerDes IBIS/AMI manager dialog box.

* Update the Rx model name to clock forward rx.

* Note that the Tx and Rx corner percentageis set to 10. This will scale the min/max analog
model corner values by +/-10%.

» Verify that Dual model is selected for the Rx AMI Model Settings. This will create a model
executable that support both statistical (Init) and time domain (GetWave) analysis.

* Set the Rx model Bits to ignore value to 10 to allow enough time for the external clock
waveform to settle during time domain simulations.

* Set Models to export to Rx only since we are only generating a Rx model.
* Set the IBIS file name to be clock forwarding rx.ibs
* Press the Export button to generate models in the Target directory.

Review AMI file

The resulting Rx AMI file will look like a normal Rx AMI file with two exceptions. First, the

AMI Version is set to 7.1. The second is the inclusion of the reserved parameter
Rx_Use_Clock_Input. Since both of these changes are from an unreleased version of the IBIS
Specification, either one will cause this AMI file to fail the IBIS AMI Checker (which is currently on
version 7.0.1). If this causes any problems in your EDA tool you may want to skip the running of the
AMI Checker.

Model Limitations
This clock forwarding AMI model requires an EDA tool that supports BIRD 204.
Test Generated IBIS-AMI Models

The clock forwarding receiver IBIS-AMI model is now complete and ready to be tested in any industry
standard AMI model simulator that supports BIRD 204.

References

1 IBIS-AMI Specification
2 [BIS BIRD 204

6-29

http://www.ibis.org/ver7.0/
https://ibis.org/birds/

Industry Standard IBIS-AMI Models

* “PCle4 Transmitter/Receiver IBIS-AMI Model” on page 7-2

» “PCle5 Transmitter/Receiver IBIS-AMI Model” on page 7-15

* “DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model” on page 7-37

* “DDR5 Controller Transmitter/Receiver IBIS-AMI Model” on page 7-49

* “CEI-56G-LR Transmitter/Receiver IBIS-AMI Model” on page 7-60

* “USB3.1 Transmitter/Receiver IBIS-AMI Model” on page 7-69

* “Design DDRS IBIS-AMI Models to Support Back-Channel Link Training” on page 7-78
* “ADC IBIS-AMI Model Based on COM” on page 7-110

7

Industry Standard IBIS-AMI Models

PCled4 Transmitter/Receiver IBIS-AMI Model

7-2

This example shows how to create generic PCle Generation 4 (PCle4) transmitter and receiver IBIS-
AMI models using the library blocks in SerDes Toolbox™. The generated models conform to the IBIS-
AMI and PCI-SIG PCle4 specifications.

PCled4 Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up the target transmitter and receiver AMI model architecture
using the blocks required for PCIe4 in the SerDes Designer app. The model is then exported to
Simulink® for further customization.

This example uses the SerDes Designer model pcie4 txrx ami. Type the following command in the
MATLAB® command window to open the model:

>> serdesDesigner('pcied4 txrx _ami')

Tx Rx
| DFE /
.—[FFE D Lr:,har~ne|J~~[D H CTLE H CDR J—~
FFE AnalogOut Channel Analogln CTLE DFECDR

A PCle4 compliant transmitter uses a 3-tap feed forward equalizer (FFE) with one pre-tap and one
post-tap, and ten presets. The receiver model uses a continuous time linear equalizer (CTLE) with
seven pre-defined settings, and a 2-tap decision feedback equalizer (DFE). To support this
configuration the SerDes System is set up as follows:

Configuration Setup

* Symbol Time is set to 62.5 ps, since the maximum allowable PCle4 operating frequency is 16
GHz

* Target BER is set to 1e-12.

* Samples per Symbol, Modulation, and Signaling are kept at default values, which are
respectively 16, NRZ (non-return to zero), and Differential.

Transmitter Model Setup
* The Tx FFE block is set up for one pre-tap and one post-tap by including three tap weights.
Specific tap presets will be added in later in the example when the model is exported to Simulink.

* The Tx AnalogOut model is set up so that Voltage is 1.05 V, Rise time is 12 ps, R (output
resistance) is 50 Ohms, and C (capacitance) is 0.5 pF according to the PCle4 specification.

Channel Model Setup

¢ Channel loss is set to 15 dB.
+ Target Frequency is set to the Nyquist frequency, 8 GHz.
+ Differential impedance is kept at default 100 Ohms.

PCle4 Transmitter/Receiver IBIS-AMI Model

Receiver Model Setup

* The Rx Analogin model is set up so that R (input resistance) is 50 Ohms and C (capacitance) is
0.5 pF according to the PCle4 specification.

* The Rx CTLE block is set up for 7 configurations. The GPZ (Gain Pole Zero) matrix data is derived
from the transfer function given in the PCle4 Behavioral CTLE specification.

* The Rx DFE/CDR block is set up for two DFE taps. The limits for each tap have been individually
defined according to the PCle4 specification to +/-30 mV for tapl and +/-20 mV for tap2.

Plot Statistical Results
Use the SerDes Designer plots to visualize the results of the PCle4 setup.

Add the BER plot from ADD Plots and observe the results.

BER

0.25

0.2

[Probability]

0 10 20 30 40 50 60
[ps]

Change the Rx CTLE Configuration select parameter value from 0 to 6 and observe how this
changes the data eye.

7

Industry Standard IBIS-AMI Models

0.25

0.2

0.15 &

0.1

0.05

[ps]

[Probability]

Change the value of the Tx FFE Tap weights from [0 1 0] to [-0.125 0.750 -0.125] and
observe the results.

PCle4 Transmitter/Receiver IBIS-AMI Model

[Probability |

[ps]

Change the Rx CTLE Mode to Adapt and observe the results. In this mode all CTLE values are swept
to find the optimal setting.

7-5

7 Industry Standard IBIS-AMI Models

BER

0158

0.1

0.05

[V]
=
[Probability]

-0.05

[ps]

Before continuing, reset the value of the Tx FFE TapWeights back to [0 1 0] and Rx CTLE
ConfigSelect back to 0. Leave the Rx CTLE Mode at Adapt. Resetting these values here will avoid
the need to set them again after the model has been exported to Simulink. These values will become
the defaults when the final AMI models are generated.

Export SerDes System to Simulink

Click on the Export button to export the above configuration to Simulink for further customization
and generation of the AMI model executables.

PCle4 Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customize it as required for PCle4 in Simulink.

Review Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel
and Rx blocks. All the settings from the SerDes Designer app have been transferred to the Simulink
model. Save the model and review each block setup.

PCle4 Transmitter/Receiver IBIS-AMI Model

Configuration

Slirmulus Ot warva_in

Tx

wiee_pu

In

[

Angag Chanmed

Ot

wave_in

Rx

e _oul

y

Eye Diagrar

* Double click the Configuration block to open the Block Parameters dialog box. The parameter
values for Symbol time, Samples per symbol, Target BER, Modulation and Signaling is

carried over from the SerDes Designer app.

* Double click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS
(pseudorandom binary sequence) order and the number of symbols to simulate. This block is not

carried over from the SerDes Designer app.

* Double click the Tx block to look inside the Tx subsystem. The subsystem has the FFE block

carried over from the SerDes Designer app. An Init block is also introduced to model the
statistical portion of the AMI model.

* Double click the Analog Channel block to open the Block Parameters dialog box. The parameter
values for Target frequency, Loss, Impedance and Tx/Rx analog model parameters is carried

over from the SerDes Designer app.

* Double click on the Rx block to look inside the Rx subsystem. The subsystem has the CTLE and
DFECDR blocks carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

Run the Model

Run the model to simulate the SerDes System.

Two plots are generated. The first is a live time-domain (GetWave) eye diagram that is updated as the

model is running.

7-7

7 Industry Standard IBIS-AMI Models

4. Eye Diagram
Eile Tools VWiew Help
@-=2/0r@® |- a-C - L

k]
k|
=1

E
=
™

i
fid

Ready T=2e-07

The second plot contains views of the statistical (Init) and time domain (GetWave) results, similar to
what is available in the SerDes Designer App.

PCle4 Transmitter/Receiver IBIS-AMI Model

|4\ Init Statistical and Time Domain Analysis Results — a X
Eile Edit ¥iew [nsert Tools Desktop Window Help E
NEde @08 k@

Stat Analysis

Pullse Respolnse . 05 Waveform Derived from Pulse IRespolnse
08 Unequalized Unegqualized
Equalized } Equalized
04 ! Hl ""M VH
Ef"\\” H |‘1|
| - v
0= -0.5
0 1 2 3 4 5 0 0.2 0.4 0.6 0.8 1 1.2 1.4
[s] x10% [s] %107
0.5 Statistical Eye 100 Statistical Metric | Data |
B o Eye Height (V) 0.3053
- Eye Width (p=) 72,6030
E Eye Area (V*ps) 18,7477
a CoM 59600
E VEC 5.0818
=
0 20 40 60 80
[ps]
Time Domain Analysis
Time Domain Eye " Tirne Domain Metric Data
0. ' ' ' | 10 Eye Height (V) 0.3300
Eye Width (ps) 76.9533
= Eye Area (vps) 16.5709
= % COM 67133
= E WEC 53743
o Kinimum BER 5.2632e-04
[ps]

Update Tx FFE Block

* Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters dialog box.
* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

* Deselect the Mode parameter to remove this parameter from the AMI file, effectively hard-coding
the current value of Mode in final AMI model to Fixed.

7 Industry Standard IBIS-AMI Models

7-10

Review Rx CTLE Block
* Inside the Rx subsystem, double click the CTLE block to open the CTLE Block Parameters dialog
box.

* Gain pole zero data is carried over from the SerDes Designer app. This data is derived from the
transfer function given in the PCIE4 Behavioral CTLE specification.

* CTLE Mode is set to Fixed, which means an optimization algorithm built into the CTLE system
object selects the optimal CTLE configuration at run time.

Update Rx DFECDR Block

* Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block Parameters
dialog box.

* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

* Clear the Phase offset and Reference offset parameters to remove these parameters from the
AMI file, effectively hard-coding these parameters to their current values.

Generate PCle4 Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
PCle4, then generates IBIS-AMI compliant PCle4 model executables, IBIS and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the Open SerDes
IBIS/AMI Manager button. In the IBIS tab inside the SerDes IBIS/AMI manager dialog box, the
analog model values are converted to standard IBIS parameters that can be used by any industry
standard simulator. In the AMI-Rx tab in the SerDes IBIS/AMI manager dialog box, the reserved
parameters are listed first followed by the model specific parameters following the format of a typical
AMI file.

Update Transmitter AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS/AMI manager dialog box. Following the format of a typical
AMI file, the reserved parameters are listed first followed by the model specific parameters.

Inside the Model_Specific parameters, you can set the TX FFE tap values in three different ways:
* Leave the Tx FFE tap values at their default configuration and you can enter any floating point

value for the pre/main/post taps values.

* Create a new AMI parameter to automatically select preset values - see “Managing AMI
Parameters” on page 6-2.

» Directly specify the ten preset coefficients as defined in the PCle4 specification - shown below in
this example.

When you directly specify the preset coefficients, you change the format of the three TapWeights
and specify the exact value to use for each preset. Only these ten defined presets will be allowed, and
all three taps must be set to the same preset to get the correct values.

Set Preshoot Tap

* Select TapWeight -1, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.000.

PCle4 Transmitter/Receiver IBIS-AMI Model

Change the Description to Preshoot tap value.
Change the Format from Range to List.
Change the Default value to 0.000.

In the List values box enter: [0.000 0.000 0.000 0.000 0.000 -0.100 -0.125 -0.100
-0.125 -0.166].

In the List_Tip values box enter: ["PO" "P1" "P2" "P3" "P4" "P5" "P6" "P7" "P8"
IIP9II].

Click OK to save the changes.

Set Main Tap

Select TapWeight 0, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
Set the Current Value to 0.750.

Change the Description to Main tap value.

Change the Format from Range to List.

Change the Default value to 0.750.

In the List values box enter: [0.750 0.833 0.800 0.875 1.000 0.900 0.875 0.700
0.750 0.834].

In the List_Tip values box enter: ["PO" "P1" "P2" "P3" "P4" "P5" "P6" "P7" "P8"
IIP9II].

Click OK to save the changes.

Set De-emphasis Tap

Select TapWeight 1, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
Set the Current Value to -0.250.

Change the Description to: De-Emphasis tap value.

Change the Format from Range to List.

Change the Default value to -0.250.

In the List values box enter: [-0.250 -0.167 -0.200 -0.125 0.000 0.000 0.000
-0.200 -0.125 0.000].

In the List_Tip values box enter: ["PO" "P1" "P2" "P3" "P4" "P5" "P6" "P7" "P8"
IIP9II]'

Click OK to save the changes.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model click the Reserved Parameters... button to bring up the
Tx Add/Remove Jitter&Noise dialog, select the Tx_DCD, Tx_Dj and Tx_Rj boxes and click OK to add
these parameters to the Reserved Parameters section of the Tx AMI file. The following ranges allow
you to fine-tune the jitter values to meet PCle4 jitter mask requirements.

Set Tx DCD Jitter Value

Select Tx_DCD, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
Set the Current Value to 0.0.
Change the Format to Range.

7-11

7 Industry Standard IBIS-AMI Models

7-12

* Set the Typ value to 0.
* Set the Min value to 0.
* Set the Max value to 3.0e-11
* Click OK to save the changes.

Set Tx Dj Jitter Value

» Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0.

* Change the Format to Range.

* Set the Typ value to 0.

* Set the Min value to 0.

* Set the Max value to 3.0e-11

* Click OK to save the changes.

Set Tx Rj Jitter Value

» Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0.

* Change the Format to Range.

* Set the Typ value to 0.

* Set the Min value to 0.

* Set the Max value to 2.0e-12

* Click OK to save the changes.

Update Receiver AMI Parameters

Open the AMI-Rx tab in the SerDes IBIS/AMI manager dialog box. Following the format of a typical
AMI file, the reserved parameters are listed first followed by the model specific parameters.

Add Rx Jitter Parameters

To add Jitter parameters for the Rx model click the Reserved Parameters... button to bring up the
Rx Add/Remove Jitter&Noise dialog, select the Rx_DCD, Rx_Dj and Rx_Rj boxes and click OK to add
these parameters to the Reserved Parameters section of the Rx AMI file. The following ranges allow
you to fine-tune the jitter values to meet PCle4 jitter mask requirements.

Set Rx DCD Jitter Value

» Select Rx_DCD, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0.

* Change the Format to Range.

* Set the Typ value to 0.

* Set the Min value to 0.

* Set the Max value to 3.0e-11

* Click OK to save the changes.

PCle4 Transmitter/Receiver IBIS-AMI Model

Set Rx Dj Jitter Value

Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
Set the Current Value to 0.0.

Change the Format to Range.

Set the Typ value to 0.

Set the Min value to 0.

Set the Max value to 3.0e-11

Click OK to save the changes.

Set Rx Rj Jitter Value

Select Rx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
Set the Current Value to 0.0.

Change the Format to Range.

Set the Typ value to 0.

Set the Min value to 0.

Set the Max value to 1.0e-12

Click OK to save the changes.

Export Models

Open the Export tab in the SerDes IBIS/AMI manager dialog box.

Update the Tx model name to pcie4 tx.
Update the Rx model name to pcie4 rx.

Note that the Tx and Rx corner percentage is set to 10. This will scale the min/max analog
model corner values by +/-10%.

Verify that Dual model is selected for both the Tx and the Rx AMI Model Settings. This will create
model executables that support both statistical (Init) and time domain (GetWave) analysis.

Set the Tx model Bits to ignore value to 3 since there are three taps in the Tx FFE.

Set the Rx model Bits to ignore value to 20, 000 to allow sufficient time for the Rx DFE taps to
settle during time domain simulations.

Set Models to export as Both Tx and Rx so that all the files are selected to be generated (IBIS
file, AMI files and DLL files).

Set the IBIS file name to be pcie4 serdes.
Press the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Models

The PCle4 transmitter and receiver IBIS-AMI models are now complete and ready to be tested in any
industry standard AMI model simulator.

References

[1] PCI-SIG, https://pcisig.com.

7-13

https://pcisig.com/

7 Industry Standard IBIS-AMI Models

[2] SiSoft Support Knowledge Base Article: PCle-Gen4 Compliance Kit, https://
sisoft.nal.teamsupport.com/knowledgeBase/15488464.

See Also
CTLE | DFECDR | FFE | SerDes Designer

More About

. “PCleb Transmitter/Receiver IBIS-AMI Model” on page 7-15
. “Managing AMI Parameters” on page 6-2
. “Customizing SerDes Toolbox Datapath Control Signals” on page 5-2

External Websites

. https://www.sisoft.com/support/

7-14

https://sisoft.na1.teamsupport.com/knowledgeBase/15488464
https://sisoft.na1.teamsupport.com/knowledgeBase/15488464
https://www.sisoft.com/support/

PCle5 Transmitter/Receiver IBIS-AMI Model

PCle5 Transmitter/Receiver IBIS-AMI Model

This example shows how to create generic PCle Generation 5 (PCle5) transmitter and receiver IBIS-
AMI models using the library blocks in SerDes Toolbox. The IBIS-AMI models generated by this
example conform to the PCle Genb Base-Specification published by the PCIE-SIG.

PCle5 Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up the target transmitter and receiver AMI model architecture
using the blocks required for PCIe5 in the SerDes Designer app. The model is then exported to
Simulink® for further customization.

This example uses the SerDes Designer model pcie5 ibis-ami. Type the following command in the
MATLAB® command window to open the model:

>> serdesDesigner('pcie5 ibis-ami');
Tx Rx

{THEEEHEHEHE

FFE AnalogQut Channel Analogin CTLE CTLEZ DFECDR

Configuration Setup

* Symbol Time is set to 31.25 ps, since the maximum allowable PCle5 datarate is 32 GT/s with a
Nyquist frequency of 16GHz.

* Target BER is set to 1e-12.

* Samples per Symbol is set to 32.

¢ Modulation is set to NRZ (non-return to zero).

* Signaling is set to Differential.

Transmitter Model Setup

* The Tx FFE block is set up for one pre-tap, one main tap, and one post-tap by including three tap
weights. Specific tap presets will be added in later in the example when the model is exported to
Simulink.

* The Tx AnalogOut model is set up so that Voltage is 1V, Rise time is 12 ps, R (output resistance)
is 50 Ohms (Table 8-10 note 3) , and C (capacitance) is 0.5 pF according to the PCle5
specification.

Channel Model Setup

* Channel loss is set to 34 dB (37dB is maximum loss for Base channel plus CEM card).

* Differential impedance is set to 85 Ohms (see PCIe5 Base Spec, section 8.4.1.2, Figure 8-28 and
8-29).

7-15

7 Industry Standard IBIS-AMI Models

7-16

Target Frequency is set to the Nyquist frequency for 32GT/s data rate, which is 16 GHz.

Receiver Model Setup

The Rx Analogin model is set up so that R (input resistance) is 50 Ohms (Table 8-10 note 3), and C
(capacitance) is 0.5 pF according to the PCle5 specification.

There are two Rx CTLE blocks to separate the PCle Gen5 repeated poles since the SerDes toolbox
CTLE does not allow for repeated or overlapping poles.

The first Rx CTLE block has a single transfer function with two poles and one zero.
The second Rx CTLE set up for 11 configurations (0 to 10) from the CTLE specification.

The combined CTLEs and their associated GPZ Matricies meet the Poles and Zeros given in the
PCleb Base Specification (Equation 8-7).

The Rx DFE/CDR block is set up for three DFE taps. The limits for each tap have been individually
defined according to the PCle5 specification to +/-80 mV for tap 1, +/-20 mV for tap 2, and
+/-20 mV for tap 3.

Plot Statistical Results

Use the SerDes Designer plots to visualize the results of the PCle5 setup.

You can confirm the TX FFE is functional by setting the value of the Tx FFE TapWeights from [0 1
0] and Rx CTLE2 Mode to adapt. Add the BER plot from ADD Plots and observe the results.

PCle5 Transmitter/Receiver IBIS-AMI Model

4\ SerDes Designer - pcie5_ibis-ami

SERDES DESIGNER

or O HE

Symbol Time (8)(3125 | \ioquaion g ¥] | [me

_Hn% RETEED

m = '

Analyze

Block Parameters |

CTLE2 (CTLE)

Mame: CTLEZ

Mode |adapt ~

£

Specification |GPZ Matrix

Gain pole zero matrix |[-5 -8500000000 -5342242589 -23000000000;-6 -9500000000 -4761278719 -23000000000;-

Samples per Symbol (22~
New Open Save _ AGC Delete Add Plots LAYOUT | Export
- IBETHEER 112 [l e e - Auto-Analyze i
FILE COMNFIGURATION BLOCKS AMNALYSIS EXPORT -
[SerDes System]_
Tx Rx
FFE H D’ Channel [>v CTLE CTLE o
FFE AnalogOut Channel Analogin CTLE CTLEZ DFECDR
[BER |

BER

[Probability |

0 5 10 15 20 25 30
[ps]

Change the Rx CTLE2 Mode to fixed and Rx CTLE2 ConfigSelect to 3 and observe the BER plot

changes:

7-17

7 Industry Standard IBIS-AMI Models

4\ SerDes Designer - pcie5_ibis-ami*

— O s
oo [- =0 @d

i B Modustion[Rz ~] (=) [T s ¥
- :
MNew Open Save SplsE Sy Signaling | Differential v AGC FFE Delete Add Plots LAYOUT | Export
- TargetBER[1c12 | 9neingCHEEmE AL -
= _
FILE COMNFIGURATION BLOCKS AMALYSIS EXPORT | &

__[SerDes System]_

X

Tx R
DFE /
.—{ FFE H D’ }——{ Channel }——{ D H CTLE }— CTLE ﬁ Far }—.
FFE

AnalogOut Channel Analogin CTLE CTLEZ DFECDR

| Block Parameters | | BER |
CTLEZ (CTLE) BER
Mame: CTLEZ -
Mode |fixed e

=
Configuration select |3 ~ =
%
Specification |GPZ Matrix ~ _E
Gain pole zero matrix |[-5 -3500000000 -53422425285 -23000000000,-5 -9501 DI_-‘

Before continuing, change the Rx CTLE2 Mode at Adapt. Resetting the values for TX FFE and RX
CTLE2 here will avoid the need to set them again after the model has been exported to Simulink.
These values will become the defaults when the final AMI models are generated.

Select Jitter Parameters for TX and RX

On the toolstrip, click on the button for Tx/Rx Jitter. You can enable which jitter parameters are
exported to Simulink. You can also add jitter parameters at a later time using the IBIS-AMI manager
in Simulink. In the Tx Jitter section, check the boxes for Tx DCD, Tx Rj, Tx Dj. In the Rx Jitter
section, check the boxes for Rx DCD, Rx Rj, and Rx Dj.

Add Tx Jitter Parameters

You can add Jitter parameters to the Tx from PCle Genb Base specification, table 8-6, "Data Rate
Dependent Transmitter Parameters." As you add parameters, the BER plot will show their effect on
the signal. Note: these parameters will export as type "Float" with format "Value." After exporting to
Simulink, you can change these to format "Range" using the IBIS-AMI Manager.

Set Tx DCD Jitter Value (Ttx-upw-tj from Table 8-6 in the PCle5 Base Spec)

* Set the value to 6.25e-12

7-18

PCle5 Transmitter/Receiver IBIS-AMI Model

* Change the units from UI to seconds.
Set Tx Rj Jitter Value (Ttx-rj from table 8-6 in the PCle5 Base Spec)

* Set the value to 0.45e-12
* Change the units from UI to seconds.

Set Tx Dj Jitter Value (Ttx-upw-djdd from Table 8-6 in the PCle5 Base Spec)

* Set the value to 2.5e-12
* Change the units from Ul to seconds.

You can set many more Jitter Parameters in the SerDes Designer App. Note: after exporting to
Simulink, you can edit their Type, Usage, Format, and Value using the IBIS-AMI manager.

o\ SerDes Designer - pcied_ibis-ami = O x
o

dh T EH et tmeeBB a9 Analyze 4
Samplesper Symbol[32 ~| o .
New Open Save Tx/Rx Jitter = BLOCKS = Add Plots LAYOUT | Export
- SetEER 112 W . " @ Auto-Analyze z
L4 - —
FILE COMFIGURATION AMNALYSIS EXPORT =
]’ SerDes System 1
Tx Rx
.—{ H D }~~{ Channel }~~{ [>. H CTLE H CTLE H =iay }—~
AnalogOut Channel Analogin CTLE CTLE2 DFECDR
| Jitter Parameters | | BER |
e BER
Clock Mode:
0.1
(®) Clocked () ideal
0.05
Tx Jitter: —_
_ =
Name Value Unit =
— -]
5.25e-12 S ds = U g
] T=_DCD .25e- econds — 8
TRy 0.45e-12 Seconds E
2 T_ni 25e-12 Seconds -0.05
|:|Tx_5j 0 ul et
DTx_SLFrequency‘ 1000000 Hz -0.1
R Jitter:

7-19

7 Industry Standard IBIS-AMI Models

Export SerDes System to Simulink

Click on the Export button to export the above configuration to Simulink for further customization
and generation of the AMI model executables.

PCle5 Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customize it as required for PCIe5 in Simulink.

Review Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel
and Rx blocks. All the settings from the SerDes Designer app have been transferred to the Simulink
model. Save the model and review each block setup.

bi untitled * - Simulink prerelease use = O x

SIMULATION

9 Open = i Stop Time | 6.4e-08 (o
F a3 i & 4 @& b 2
- - - o - -
New ave Library Signal LEE Step Run Step Data
~ = Print * Browser Table o@ Fast Restart Back = - Forward Inspector
FILE LIERARY PREPARE SIMULATE REVIEW RESULTS
untitled
® |Pa|untited » hd
@
E3
=} Configuration
(5]
O
Stimulus ‘WaveOut Waeln T= WaveOul —b-l'-'\‘aveln Analog Channel WaveOut Wiaveln Rx WaveOul @l
-]
Eye Diagram
» |
Ready 24% FixedStepDiscrete

* You can confirm settings are carried over from the SerDes Designer app by double clicking the
Configuration block and the Analog Channel block. Then open the Block Parameters dialog box
and check their values.

* Double click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS
(pseudorandom binary sequence) order and the number of symbols to simulate. This block is not
carried over from the SerDes Designer app.

* You can double click the Tx block and the Rx block to look inside each of their subsystems which
are inherited from the SerDes Designer app.

Set Ignore Bits

Before running the simulation, open the IBIS-AMI manager. You can set the bits to ignore for the Tx
to 3, because the FFE has 3 taps. Set the bits to ignore for the Rx to 1000, so the DFECDR can
converge during time domain simulation.

7-20

PCle5 Transmitter/Receiver IBIS-AMI Model

4| SerDes IBIS-AMI Manager — O >

Export |IBIS |AI".I1I—T>{ AMI - Rx

Model Configuration IBIS Settings
'::?::' Txand Rx Tx model name | pries_tx |
(O IBIS Model Mame o_mode
.;:::;. R — Fx model name | pcief_rx |
.;:E:;. Retimer Tx and Rx comer percentage
AMI Model Settings - Tx AMI Model Settings - Rx
Model Type Model Type
(@) Dual model (@) Dual model
() GetWave only () GetWave only
() Init only) Init only

Bits to ignore Bits to ignore 1000

File Creation Options
Muodels to export
IBIS file

IEIS file name {_ibs) | pcie5ami.ibs

(@) Both Tx and Rx

)T onl
- i AMI file(s) [| Use List Format for Modulation
[R onl
. DLL file(s)
Target directory | D:iibis-amilpcies | | Browse. . |
| Export |
| Close |

Update Tx Jitter Parameters

You can change the Format to "Range" for the Jitter Parameters by clicking on the AMI - Tx tab, select
Tx_DCD and press the Edit button.

7-21

7 Industry Standard IBIS-AMI Models

4. SerDes IBIS-AMI Manager — O >
Expart IBIS AMI - Tx AMI - R
* serdes_tx Node Details
» Reserved_Parameters
- Mode name | Tx_DCD
AMI_Version
Init_Returns_Impulse Description
. - Transmit duty cycle distortion,
Get\Wave_Exists
! - defined as half of the peak to peak
Max_Init_Agaressors clock duty cycle distortion in units of
Modulation EEELILE:
Tx_DCD
Ts_Rij Type |Float
Tx_Dj Usage | Info
= Model_Specific
~ FFE Format | Value
Mode Value | 6.25e-12
» Tap\Weights
-1
]
1
Current value 6.258-12
Reserved Parameters. .. Edit ...
Close

The following ranges allow you to fine-tune the jitter values to meet PCle5 jitter mask requirements.
For example, see table 8-6, "Data Rate Dependent Transmitter Parameters" in the PCle Genb Base
specification.

Set Tx DCD Jitter Values (Ttx-upw-tj from Table 8-6)

» Select Tx_DCD, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
» Verify the Type to Float.

* Change the Format to Range.

* Set the Current Value to 0.

* Set the Typ value to 0.

* Set the Min value to 0.

7-22

PCle5 Transmitter/Receiver IBIS-AMI Model

* Set the Max value to 6.25e-12
* Click OK to save the changes.

4. SerDes IBIS-AMI Manager - Add/Edit AMI Parameter — O >
Parent Node @ Reserved_Parameters
Parameter name | Tx_DCD
Current value]
Description
Transmit duty cycle distortion, defined as half of the peak to peak clock
duty cycle distortion in units of seconds.
Usage |Info L4
Type |Float L4
Format Range L4
Fange Format details
Typ (0
Min]
Max | 6.25e-12
(0] .4 Cancel

Set Tx Rj Jitter Values (Ttx-rj from table 8-6)

* Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.

» Follow the steps for Tx_DCD, above.
* Set the Max value to 0.45e-12
* Click OK to save the changes.

Set Tx Dj Jitter Values (Ttx-upw-djdd from Table 8-6)

» Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.

* Follow the steps for Tx_DCD, above.
* Set the Max value to 2.5e-12
* Click OK to save the changes.

7-23

7 Industry Standard IBIS-AMI Models

7-24

Update Receiver AMI Parameters

Open the AMI-Rx tab in the SerDes IBIS/AMI manager dialog box. Following the format of a typical
AMI file, the reserved parameters are listed first followed by the model specific parameters.

Update Rx Jitter Parameters

Select the Rx_DCD, Rx_Dj and Rx_Rj and follow the steps above from Tx_DCD. The following ranges
allow you to fine-tune the jitter values to meet PCleb5 jitter mask requirements.

Set Rx DCD Jitter Values

* Select Rx_DCD, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Change the Type to Float.

* Change the Format to Range.

* Set the Current Value to 0.

* Set the Typ value to 0.

* Set the Min value to 0.

* Set the Max value to 0.

* Click OK to save the changes.

Set Rx Rj Jitter Values (Trx-st-rj from Table 8-9)

* Select Rx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
» Follow the steps for Rx_DCD.

* Set the Max value to 0.5e-12

* Click OK to save the changes.

Set Rx Dj Jitter Values

* Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
» Follow the steps for Rx_DCD.
* Click OK to save the changes.

Run the Model
Run the model to simulate the SerDes System.

Many plots are generated, including a live time-domain (GetWave) eye diagram that is updated as the
model is running.

PCle5 Transmitter/Receiver IBIS-AMI Model

4. Eye Diagram
Eile Tools VWiew Help

@- 5 OP® - &-E H-| L-|E

i
'[E
=

E
=
™

A
fid

T=5.25e-08

The second plot contains views of the statistical (Init) results and persistent time domain (GetWave)
results, similar to what is available in the SerDes Designer App.

7-25

7 Industry Standard IBIS-AMI Models

|4 Init Statistical and Time Demain Analysis Results — O >
Eile Edit ¥iew [nsert Tools Desktop Window Help k
Udde @ 0B LE
Stat Analysis
8.1 Pulse Response o Waveform Derived from Pulse Response
Unequalized | Unegqualized
0.1 Equalized i 02 f'ﬂll Equallzcd
— — r Al \ JILI
= 0.08 = of ﬂ '|u,-.,NJI "4'% 1: “-.r’ Al J«UFUI.II""I‘H
0 L - 0.2}
-0.05 0.4
0 2 4 6 B 0 1 2 3 4
(5] <10 [s] <107
Statistical Eye a Statistical Metric Data
10 Eye Height (V) 0.0129
Eye Width (ps) 18.1886
= Eye Area (V*ps) 0.1636
% COM 28733
B VEC 11.0057
o
0 5 10 15 20 25 30
[Ps]
Time Domain Analysis
Time Domain Eye 0 Tirne Domain Metric Data
' ' 110 Eye Height (V) 00172
: Eve Width (ps) 21.8506
= Eye Area (V*ps) 0.2519
E COM 4.0501
-g WEC B8.5735
o Minimum BER 1.00002-03
0 5 10 15 20 25 a0
[ps]

Review Tx FFE Block

* Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters dialog box.
* Verify that the current value of Mode is set to Fixed.

Review Rx CTLE Blocks
* Inside the Rx subsystem, double click the CTLE2 block to open the Block Parameters dialog box.

7-26

PCle5 Transmitter/Receiver IBIS-AMI Model

* Gain pole zero data is carried over from the SerDes Designer app. This data, combined with the
gain pole zero data of CTLE1, applies the overall transfer function of the behavioral CTLE given
by the PCle5 Base Specification.

* CTLE Mode is set to Adapt, which means an optimization algorithm built into the CTLE system
object selects the optimal configuration at run time.

Review Rx DFECDR Block

* Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block Parameters
dialog box.

* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

» The DFE tap value(s) are carried over from the SerDes Designer app.
Generate PCle5 Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
PCIe5, then generates IBIS-AMI compliant PCle5 model executables, IBIS and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the Open SerDes
IBIS/AMI Manager button. In the IBIS tab inside the SerDes IBIS/AMI manager dialog box, the
analog model values are converted to standard IBIS parameters that can be used by any industry
standard simulator. In the AMI-Rx tab in the SerDes IBIS/AMI manager dialog box, the reserved
parameters are listed first followed by the model specific parameters following the format of a typical
AMI file.

Update Transmitter AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS/AMI manager dialog box. Following the format of a typical
AMI file, the reserved parameters are listed first followed by the model specific parameters.

Inside the Model_Specific parameters, you can set the TX FFE tap values by creating new AMI
parameters and implementing an algorithm in the Init customer specific code section to select PCle5
Preset values PO through P10.

When you directly specify the preset coefficients, you change the format of the three TapWeights
and specify the exact value to use for each preset. Only these eleven defined presets will be allowed,
and all three taps must be set to the same preset to get the correct values.

7-27

7 Industry Standard IBIS-AMI Models

4 SerDes IBIS-AMI Manager - Add/Edit AMI Parameter — O >

Parent Mode | FFE

Farameter name | ConfigSelect

Current value CUSTOM L4

Description

FCle TX tap weights configuration

Usage |[In 4
Type | Integer r
Format List r

List Format details

Default | -1
Listvalues | [-10123456G7 8 9]

List_Tip values | ["CUSTOM" "FO0" "P1" "F2" "P3" "P4" "P5" "P&" "P7" "P5" "P9”

(]9 Cancel

Modify Init to Select Presets for Preshoot Tap, Main Tap, and De-emphasis Tap

Modify the Initialize MATLAB function inside the Init block in the Tx subsystem to use the newly
added ConfigSelect*parameter. The ConfigSelect* parameter controls the existing three
transmitter taps. To accomplish this, add a switch statement that takes in the values of
ConfigSelect* and automatically sets the values for all three Tx taps, ignoring the user defined
values for each tap. If a ConfigSelect value of -1 is used, then the user-defined Tx tap values are
passed through to the FFE datapath block unchanged.

Inside the Tx subsystem, double-click the Init block to open the Block Parameters dialog box and click
the Refresh Init button to propagate the new AMI parameter to the Initialize sub-system.

Type Ctrl-U to look under the mask for the Init block, then double-click on the initialize block to open
the Initialize Function.

7-28

PCle5 Transmitter/Receiver IBIS-AMI Model

9} untitled/.../Init/Initialize Function * - Simulink prerelease use - O X
SIMULATION
3 0Open = i Stop Time | 6.25e-08 o~ .
oA = 5} =55 d @ b i
New ave Library Signal ioania Step Run Step Stop Data
-~ = Print - Browser Table O@ Fast Restart Back « - Forward Inspector
FILE LIERARY FREPARE SIMULATE REVIEW RESULTS
\"_I W Initialize Function
@ |[Pm|untitled P [Pa|Tx P [Pa|Init b P2 Ditialize Function -
4 |
-
Event Listener
=
=]
O
> ImpulseMatrix
TxlmpulseOut
ImpulseMatrix] Impulseln ‘ ImpulseQut
impulseEqualization
TxImpulseln
&
» |
Ready 125% FixedStepDiscrete

Double-click on the impulseEqualization MATLAB function block to open the function in MATLAB.
This is an automatically generated function which provides the impulse response processing of the
SerDes system block (IBIS AMI-Init). The %% BEGIN: and % END: lines denote the section where
custom user code can be entered. Data in this section will not get over-written when Refresh Init is
run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is
pressed)

FFEParameter.ConfigSelect; % User added AMI parameter
% END: Custom user code area (retained when 'Refresh Init' button is pressed)

To add the custom ConfigSelect control code, scroll down the Customer user code area, comment out
the FFEParameter.ConfigSelect line, then enter the following code:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is
pressed)

%FFEParameter.ConfigSelect; % User added AMI parameter
switch FFEParameter.ConfigSelect

case -1 % User defined tap weights

FFEInit.TapwWeights = FFEParameter.TapWeights;

case 0 % PCIe Configuration: PO

7-29

7 Industry Standard IBIS-AMI Models

7-30

FFEInit.TapWeights =

[0.000

case 1 % PCIe Configuration:

FFEInit.TapWeights =

[0.000

case 2 % PCIe Configuration:

FFEInit.TapWeights =

[0.000

case 3 % PCIe Configuration:

FFEInit.TapWeights =

[0.000

case 4 % PCIe Configuration:

FFEInit.TapWeights =

[0.000

0.750 -0.250];
P1

0.830 -0.167];
P2

©.800 -0.200];
P3

0.875 -0.125];
P4

1.000 0.000];

case 5 % PCIe Configuration: P5

FFEInit.TapWeights =

[-0.100

case 6 % PCIe Configuration:

FFEInit.TapWeights =

[-0.125

case 7 % PCIe Configuration:

FFEInit.TapWeights =

[-0.100

case 8 % PCIe Configuration:

FFEInit.TapWeights =

[-0.125

case 9 % PCIe Configuration:

FFEInit.TapWeights

otherwise

FFEInit.TapWeights

end

[-0.166

FFEPara

0.900 0.000];
P6
0.875 0.000];
P7
0.700 -0.200];
P8
0.750 -0.125];
P9
0.834 0.000];

meter.TapWeights;

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

To test that the new FFE control parameter is working correctly, open the SerDes IBIS-AMI Manager
dialog box from the Configuration block. In the AMI-Tx tab, edit the ConfigSelect* parameter to set
Current value to P7. This corresponds to PCle Configuration P7: Pre = -0.100, Main = 0.700 and

Post = -0.200.

Modify GetWave to Select Presets for Preshoot Tap, Main Tap, and De-emphasis Tap

To modify GetWave, add a new MATLAB function that operates in the same manner as the Initialize

function.

Inside the Tx subsystem, type Ctrl-U to look under the mask of the FFE block.

PCle5 Transmitter/Receiver IBIS-AMI Model

P4 untitled/Te/FFE * - Simulink prerelease use - O *
SIMULATION MODELING FORMAT
3 Open = jis] | Stop Time -6.4e-08 G
o° B 5} . = stop Time. (64208 _| d @ b I Ba
New e T Library Signal M |Ncrn157'| Step Run Step Stop Data Logic
~ = Print - Browser Table 0@ Fast Restart Back - Forward Inspector Analyzer
FILE LIBRARY FREPARE SIMULATE REVIEW RESULTS ry
<« A T FFE
® |[Pa|untitled » [Pa|Tx P [Pa|FFE -
@
Ed
=
D1

(1) P In
In
g [) Inf D1

FFEParameter.Mode P Mode FFE Out

Out
FFEMode
g [1x3] Jof .
FFEParameter. Tap\Weights I »| TapWeights
1%3
FFETapWeights
FFE
FFEParameter.ConfigSelect

5| ConfigSelect
» || =
Ready 150% FixedStepDiscrete

You can see that a new constant block has been added called FFEParameter.ConfigSelect. This is
created automatically by the IBIS-AMI Manager when a new Reserved Parameter is added. Next, you
can follow these steps to re-configure the selection of tap weight presets for time domain (GetWave)
simulation:

* Add a MATLAB Function block to the canvas from the Simulink/User-Defined library.

* Rename the MATLAB Function block to PCIe5FFEconfig.

* Double-click the MATLAB Function block and replace the template code with the following:

% PCIe5 tap configuration selector

o°

Selects pre-defined Tx FFE tap weights based on PCIe5 specified

o°

configurations.

o°

% Inputs:

% TapWeightsIn: User defined floating point tap weight values.
% ConfigSelect: 0-9: PCIe4 defined configuration (P0-P9).

% -1: User defined configuration (from TapWeightsIn).

% Outputs:

7-31

7 Industry Standard IBIS-AMI Models

7-32

% TapWeightsOut: Array of tap weights to be used.

)
-

function TapWeightsOut = PCIe5FFEconfig(TapWeightsIn, ConfigSelect)

switch ConfigSelect

case -1 % User defined tap weights

TapWeightsOut
case 0 % PCIe
TapWeightsOut
case 1 % PCIe
TapWeightsOut
case 2 % PCIe
TapWeightsOut
case 3 % PCIe
TapWeightsOut
case 4 % PCIe
TapWeightsOut
case 5 % PCIe
TapWeightsOut
case 6 % PCIe
TapWeightsOut
case 7 % PCIe
TapWeightsOut
case 8 % PCIe
TapWeightsOut
case 9 % PCIe
TapWeightsOut
otherwise

TapWeightsOut

end

= TapWeightsIn;
Configuration: PO

= [0.000 0.750 -0.250];
Configuration: P1

= [0.000 0.833 -0.167];
Configuration: P2

= [0.000 0.800 -0.200];
Configuration: P3

= [0.000 0.875 -0.125];
Configuration: P4

= [0.000 1.000 0.000];
Configuration: P5

= [-0.100 0.900 0.000];
Configuration: P6

= [-0.125 0.875 0.000];
Configuration: P7

= [-0.100 0.700 -0.200];
Configuration: P8

= [-0.125 0.750 -0.125];
Configuration: P9

= [-0.166 0.834 0.000];

= TapWeightslIn;

PCle5 Transmitter/Receiver IBIS-AMI Model

Re-wire the FFE sub-system so that the FFETapWeights and FFEConfigSelect constant blocks connect
to the inputs of the newly defined PCIe4FFEconfig MATLAB function block. The TapWeightsOut signal
from the PCIe4FFEconfig block connects to the TapWeights port of the FFE block.

P2 TX_FFE_switch/Te/FFE * - Simulink prerelease use - O X

SIMULATION MODELING FORMAT

3 Open =] Stop Time | 6.42-08 G

P =R B |ewmelee] @@ % I
New ave Library e =il Signal ST Step Run Step Stop Data Logic

~ 4 Print = Browser 2L ElE == Table 0@ Fast Restart Back - Forward Inspector Analyzer

FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS e

L= o T FFE X

® |[Pa| TX_FFE_switch b [Pa|Tx b [Pa|FFE -
@

D1
3 1} » In
. In
PN . Inf o1

‘ FFEParameter.Mode }—» Mode FFE out
FFEMode ot

O P TapWeights

[1x3]
113 FFE
FFEParameter. TapWeights ’—b TapWeightsin
FFETapWeights
pWeightsOut
PCle5FFEconfig
FFEParameter.ConfigSelect |—> ConfigSelect
ConfigSelect
9
5] - PCle5FFEconfig
g

» | ¢ >

Ready 125% FixedStepDiscrete

To test that the new FFE control parameter is working correctly, open the SerDes IBIS-AMI Manager
dialog box from the Configuration block. In the AMI-Tx tab, edit the ConfigSelect* parameter to set
Current value to P7. This corresponds to PCle Configuration P7: Pre = -0.100, Main = 0.700 and Post
= -0.200. Observe the output waveforms.

7-33

7

Industry Standard IBIS-AMI Models

7-34

4. Eye Diagram

Eile Tools VWiew Help

@-a/oP® - &5 H-|Li-|H

k]
k|
=

E
=
™

i
fid

T=5.25e-08

PCle5 Transmitter/Receiver IBIS-AMI Model

|4 Init Statistical and Time Demain Analysis Results - O *
Eile Edit ¥iew [nsert Tools Desktop Window Help k]
Odde | @ 0E|&KE
Stat Analysis
8.1 Pulse Response o Waveform Derived from Pulse Response
Unequalized | Unegqualized
0.1 Equalized i 02 E/'I Equallzcd
= 0.05 = 0f kofW%%J 1r]f*"'-l'r nn-_u(uf"u 1|‘.JJL|
1
0= 0.2
0.05 -0.4
0 2 4 6] 0 1 2 a 4
[s] <1078 [s] <1072
Statistical Eye a Statistical Metric Data
10 Eye Height (V) 0.0129
Eye Width (p=) 18.1886
= Eye Area (V*ps) 0.1636
% COM 28733
5 VEC 11.0057
o
0 & 10 15 20 25 30
[ps]
Time Domain Analysis
Time Domain Eye 0 Tirne Domain Metric Data
' ' ' 110 Eye Height (V) 0.0172
+ Eye Width (ps) 21.8506
= Eye Area (V*ps) 0.2519
E COM 4.0501
-g WEC 8.5735
o Minimum BER 1.0000e-03

Export Models

Open the Export tab in the SerDes IBIS/AMI manager dialog box.

Update the Tx model name to pcieb tx.

Update the Rx model name to pcie5 rx.

Note that the Tx and Rx corner percentage is set to 10. This will scale the min/max analog
model corner values by +/-10%.

Verify that Dual model is selected for both the Tx and the Rx AMI Model Settings. This will create
model executables that support both statistical (Init) and time domain (GetWave) analysis.

7-35

7 Industry Standard IBIS-AMI Models

7-36

Set the Tx model Bits to ignore value to 3 since there are three taps in the Tx FFE.

Set the Rx model Bits to ignore value to 1000 to allow sufficient time for the Rx DFE taps to
settle during time domain simulations.

Set Models to export as Both Tx and Rx so that all the files are selected to be generated (IBIS
file, AMI files and DLL files).

Set the IBIS file name to be pcie5ami.
Press the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Models

The PCle Genb transmitter and receiver IBIS-AMI models are now complete and ready to be tested in
any industry standard AMI model simulator.

References

[1]1 PCI-SIG, https://pcisig.com.

See Also
CTLE | DFECDR | FFE | SerDes Designer

More About

“PCle4 Transmitter/Receiver IBIS-AMI Model” on page 7-2
“Managing AMI Parameters” on page 6-2
“Customizing SerDes Toolbox Datapath Control Signals” on page 5-2

External Websites

https://www.sisoft.com/support/

https://pcisig.com/
https://www.sisoft.com/support/

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

This example shows how to create generic DDR5 transmitter and receiver IBIS-AMI models using the
library blocks in SerDes Toolbox™ and have been Verified by Intel®. Since DDR5 DQ signals are
bidirectional, this example creates Tx and Rx models for the SDRAM. The generated models conform
to the IBIS-AMI specification.

DDR5 SDRAM Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up and explores the target transmitter and receiver architectures
using the blocks required for DDRS5 in the SerDes Designer app. The SerDes system is then exported
to Simulink® for further customization and IBIS-AMI model generation.

Type the following command in the MATLAB® command window to open the ddr5 sdram model:

>> serdesDesigner('ddr5 sdram')

Tx Rx
| . DFE !/
D Lt:,h annel VGA e
AnalogOut Channel Analogin WVIGA DFECDR

The SDRAM has a DDR5 transmitter (Tx) using no equalization. The SDRAM also has a DDR5
receiver (Rx) using a variable gain amplifier (VGA) with 7 pre-defined settings and a 4-tap decision
feedback equalizer (DFE) with built-in clock data recovery.

Configuration Setup

* Symbol Time is set to 208. 3 ps, since the target operating rate is 4.8Gbps for DDR5-4800.

+ Target BER is set to 100e-18.

* Signaling is set to Single-ended.

* Samples per Symbol and Modulation are kept at default values, which are 16 and NRZ
(nonreturn to zero), respectively.

Transmitter Model Setup

* The DDR5 SDRAM has no transmit equalization, so only an analog model is required.

* The Tx AnalogOut model is set up so that Voltage is 1.1V, Rise time is 100 ps, R (output
resistance) is 48 ohms, and C (capacitance) is 0.65 pF. The actual analog models used in the
final model will be generated later in this example.

Channel Model Setup

* Channel loss is set to 5 dB, which is typical of DDR channels.
* Single-ended impedance is set to 40 ohms.
+ Target Frequency is set to 2.4 GHz, which is the Nyquist frequency for 4.8 GHz

7-37

7 Industry Standard IBIS-AMI Models

Receiver Model Setup
* The Rx AnalogIn model is set up so that R (input resistance) is 40 ohms and C (capacitance) is
0.65pF. The actual analog models used in the final model will be generated later in this example.

» The VGA block is set up with a Gain of 1 and the Mode set to on. Specific VGA presets will be
added later in this example after the model is exported to Simulink.

* The DFECDR block is set up for four DFE taps by including four Initial tap weights set to 0. The
Minimum tap value issetto [-0.2 -0.075 -0.06 -0.045] YV, and the Maximum tap value
issetto [0.05 0.075 0.06 0.045] V.

* Note: the DFECDR offers an option for "2X Taps." Check this option to have pulse response values
match convention used by JEDEC. Uncheck this option to use pulse response values directly from
the plot.

|
Mame: DFECDR
Mode |adapt b
Initial tap weights (W) [0 0 0 0]
Minimum tap value V) |[-0.2 -0.075 -0.06 -0.045]
Maximum tap value (V) ([0.05 0.075 0.06 0.045]

2x tap weights

Plot Statistical Results

Use the SerDes Designer Add Plots button to visualize the results of the DDR5 SDRAM setup.
* Add the BER plot from Add Plots and observe the results.

7-38

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

BER

[Probability]

-20
10
0 20 40 60 80 100 120 140 160 180 200

[ps]

* Add the Pulse Response plot from Add Plots and zoom into the pulse area to observe the results.

Pulse Response
DE C T T T T T T]
Unequalized
Equalized 4

0.6 7

DE - f -

04| - -

0.3 7

0.2 7

al] |
H

[5] %1078

7-39

7 Industry Standard IBIS-AMI Models

Export SerDes System to Simulink

Click Save and then click on the Export button to export the configuration to Simulink for further
customization and generation of the AMI model executables.

DDR5 SDRAM Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customizes it as required for DDR5 in Simulink.

Review the Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel
and Rx blocks. All the settings from the SerDes Designer app have been transferred to the Simulink
model. Save the model and review each block setup.

Configuratior

D1 o1 =1} D1
——| Waveln Tx WaveOut 4’{ Waveln Anzlog Channel WaveOuf 1 Wiaveln Rx WaveOut g

Eye Diagram

* Double-click the Configuration block to open the Block Parameters dialog box. The parameter
values for Symbol time, Samples per symbol, Target BER, Modulation and Signaling are
carried over from the SerDes Designer app.

* Double-click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS
(pseudorandom binary sequence) order and the number of symbols to simulate. This block is not
carried over from the SerDes Designer app.

* Double-click the Tx block to look inside the Tx subsystem. Since there is no algorithmic model for
the transmitter, the Tx subsystem is simply a pass through from the Waveln to WaveOut ports.

* Double-click the Analog Channel block to open the Block Parameters dialog box. The parameter
values for Target frequency, Loss, Impedance and Tx/Rx Analog Model parameters are
carried over from the SerDes Designer app.

* Double-click on the Rx block to look inside the Rx subsystem. The subsystem has the VGA and
DFECDR blocks carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

Run the Model
Run the model to simulate the SerDes system.
Two plots are generated. The first is a live time domain (GetWave) eye diagram that is updated as the

model is running.

7-40

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

4. Eye Diagram
Eile Tools Wiew Help

@- a8/ 0P®| - &5 H-|u-|EHE

H
E|
T

E
=
™

A
fid

After the simulation has completed the second plot contains views of the Statistical (Init) and Time
Domain (GetWave) results, along with reported Eye metrics for each.

7-41

7 Industry Standard IBIS-AMI Models

|4 Init Statistical and Time Demain Analysis Results — O >
Eile Edit ¥iew [Insert Tools Desktop Window Help
o
NS de |2 08|k E
Stat Analysis
Pulse Response Waveform Derived from Pulse Response
0.8 - T 0.5 T T k: T r: k LAl nall
Unequalized Unegqualized
0.6 Equalized 1 Equalized
| |‘ I
0.4 |
= = 0 |
0z
L b !
. : . - 0.5 H H . -
1] 0.5 1 1.5 2 2.5 3
[5] w10
Statistical Metric | Data |
Eye Height (V) 0877
Eye Width (ps) 180.5855
= Eye Area (V*ps) 828512
= COM 17.7636
3 WEC 1.2033
2
o,
0 50 100 150 200
[ps]
Time Domain Analysis
Time Domain Eye 0 Tirne Domain Metric Data
' ' ' i, Eye Height (V) 0.7029
Eye Width (ps) 156.0945
= Eye Area (V*ps) 87.0506
% COM 202283
@ VEC 0.8901
D‘ij Minimum BER 5.2632e-04

Review Rx VGA Block

* Inside the Rx subsystem, double-click the VGA block to open the VGA Block Parameters dialog
box.

* The Mode and Gain settings are carried over from the SerDes Designer app.

7-42

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

Update Rx DFECDR Block

* Inside the Rx subsystem, double-click the DFECDR block to open the DFECDR Block Parameters
dialog box.

* The Initial tap weights, Minimum DFE tap value, and Maximum tap value RMS settings are
carried over from the SerDes Designer app. The Adaptive gain and Adaptive step size are set to
3e-06 and le-06, respectively, which are reasonable values based on DDR5 SDRAM
expectations.

* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

* Deselect Phase offset and Reference offset to remove these parameters from the AMI file,
effectively hard-coding these parameters to their current values.

7-43

7 Industry Standard IBIS-AMI Models

Block Parameters: DFECDR -

DFECDR. (mask)

Decision Feedback Equalizer with Clock Data Recovery. The DFECDR
block adaptively processes a sample-by-sample input signal or
analytically processes an impulse response vector input signal to
remove distortions at post-cursor taps.

The decision feedback equalizer modifies baseband signals to
minimize the intersymbol interference (ISI) at the clock sampling
time. The DFE samples data at each clock tick and adjusts the
amplitude of the waveform by a correction voltage. The correction
voltage is determined by the previous M sampled unit interval {UI)
values, where N is the number of DFE taps.

A clock and data recovery function provides the clock sampling
location to the DFE.

Source code
Parameters
DFE CDR
Mode Adapt -
Initial tap weights (V) [0000]
Adaptive gain |3&—{]6

Minimum DFE tap value(s) (V) |[—{].2 -0.075 -0.06 -0.045]

|

|
Adaptive step size (V) |le—ﬂﬁ | :

|

|

Maximum DFE tap value(s) (V) | [0.05 0.075 0.06 0.045]

2x tap weights

¥ IBIS-AMI parameters
Choose parameters to be included in the IBIS-AMI model.

Mode Tap weights [] Phase offset [] Reference offset

Cancel Help Apply

Generate DDR5 SDRAM IBIS-AMI Models

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
a DDR5 SDRAM, and then generates IBIS-AMI compliant DDR5 SDRAM model executables, IBIS and

AMI files.

7-44

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

Open the Block Parameter dialog box for the Configuration block and click on the Open SerDes
IBIS-AMI Manager button. In the IBIS tab inside the SerDes IBIS-AMI manager dialog box, the
analog model values are converted to standard IBIS parameters that can be used by any industry-
standard simulator.

Review Transmitter (Tx) AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS-AMI manager dialog box. Notice that there are no model-
specific parameters since the DDR5 SDRAM Tx does not have any equalization.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model click the Reserved Parameters... button to bring up the
Tx Add/Remove Jitter&Noise dialog, select the Tx_Dj and Tx_Rj boxes and click OK to add these
parameters to the Reserved Parameters section of the Tx AMI file. The following values allow you to
fine-tune the jitter values to meet DDR5 jitter mask requirements.

Note: All JEDEC DDR5 SDRAM values are currently available for DDR5-4800.
Set Tx Deterministic Jitter Value

* Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Change the Type to UI.

* Change the Format to Value.

* Set the Current Value to 0.1000

* Click OK to save the changes.

Set Tx Random Jitter Value

* Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Change the Type to UI.

* Change the Format to Value.

* Set the Current Value to 0.0050

* Click OK to save the changes.

Update Receiver (Rx) AMI Parameters

Open the AMI-Rx tab in the SerDes IBIS-AMI manager dialog box. The reserved parameters are
listed first followed by the model-specific parameters adhering to the format of a typical AMI file.

Set the VGA Gain:

* Highlight Gain.

* Click the Edit... button to launch the Add/Edit AMI Parameter dialog box.
* In the Description box, type Rx Amplifier Gain.

* Make sure Format is set to List and set Default to 1.

* In the List values box, enter [0.5 0.631 0.794 1 1.259 1.585 2]

* In the List_Tip values box, enter ["-6 dB" "-4 dB" "-2 dB" "0 dB" "2 dB" "4 dB" "6
dBu]

* Click OK to save the changes.

7-45

7 Industry Standard IBIS-AMI Models

7-46

Set First DFE Tap Weight

* Highlight TapWeight 1.

* Click the Edit... button to launch the Add/Edit AMI Parameter dialog box.

* Make sure Format is set to Range and set Typ = 0, Min = -0.2, and Max = 0.05.
» Click OK.

Set Second DFE Tap Weight

* Highlight TapWeight 2.

* Click the Edit... button to launch the Add/Edit AMI Parameter dialog box.

* Make sure Format is set to Range and set Typ = 0, Min = -0.075, and Max = 0.075
» Click OK.

Set Third DFE Tap Weight

* Highlight TapWeight 3.

* Click the Edit... button to launch the Add/Edit AMI Parameter dialog box.

* Make sure Format is set to Range and set Typ = 0, Min = -0.06, and Max = 0.06
* Click OK.

Set Fourth DFE Tap Weight

* Highlight TapWeight 4.

* Click the Edit... button to launch the Add/Edit AMI Parameter dialog box.

* Make sure Format is set to Range and set Typ = 0, Min = -0.045, and Max = 0.045
» Click OK.

Add Rx Jitter Parameters

To add Jitter parameters for the Rx model click the Reserved Parameters... button to bring up the
Rx Add/Remove Jitter&Noise dialog, select the Rx_Receiver_Sensitivity, Rx_Dj and Rx_Rj boxes
and click OK to add these parameters to the Reserved Parameters section of the Rx AMI file. The
following values allow you to fine-tune the jitter values to meet DDR5 jitter mask requirements.

Note: All JEDEC DDR5 SDRAM values are currently available for DDR5-4800.
Set Rx Random Jitter Value

* Select Rx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Change the Type to UI.

* Change the Format to Value.

* Set the Current Value to 0.00375

* Click OK to save the changes.

Set Rx Deterministic Jitter Value

» Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Change the Type to UI.

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

* Change the Format to Value.

* Set the Current Value to 0.01750

* Click OK to save the changes.

Set Rx Receiver Sensitivity Value

* Select Rx_Receiver_Sensitivity, then click the Edit... button to bring up the Add/Edit AMI
Parameter dialog.

* Change the Format to Value.

* Set the Current Value to 0.040

* Click OK to save the changes.

Export Models

Open the Export tab in the SerDes IBIS-AMI manager dialog box.

* Update the Tx model name to ddr5 sdram_tx.
* Update the Rx model name to ddr5 sdram_rx.

* Note that Tx and Rx corner percentage is set to 10. This scales the minimum/maximum analog
model corner values by +/-10%.

» Verify that Dual model is selected for both the Tx and the Rx AMI model settings. This creates
model executables that support both statistical (Init) analysis and time-domain (GetWave)
simulation.

* Set the Rx model Bits to ignore value to 250000 to allow sufficient time for the Rx DFE taps to
settle during time domain simulations.

* Set the Models to export to Both Tx and Rx and ensure that all files have been selected to be
generated (IBIS file, AMI file(s) and DLL file(s)). Note that while the Tx does not implement any
equalization, we are still generating a pass-through model that will allow Tx jitter to be added to
the simulation if desired.

* Set the IBIS file name to temp ddr5 sdram.ibs
* Click the Export button to generate models in the Target directory.

Update DDR5 Analog Models

To accommodate different topologies, loading configurations, data rates and transfers, DDR5 requires
variable output drive strength and input on-die termination (ODT). While the same algorithmic AMI
model is used, multiple analog models are required to cover all these use cases. The generation of
these analog models is out of scope for this example, so a completed IBS file with the following
analog models in it is available in the current example directory:

* POD11 IO Z0O34 ODTOFF: 34 ohm output impedance with no input ODT.

« POD11 IO Z0O48 ODTOFF: 48 ohm output impedance with no input ODT.

+ POD11 IN ODT34 C: Input with 34 ohm ODT.

« POD11 IN ODT40 C: Input with 40 ohm ODT.

+ POD11 IN ODT48 C: Input with 48 ohm ODT.

« POD11 IN ODT60 C: Input with 60 ohm ODT.

« POD11 IN ODT80 C: Input with 80 ohm ODT.

7-47

7 Industry Standard IBIS-AMI Models

7-48

+ POD11 IN ODT120 C: Input with 120 ohm ODT.
+ POD11 IN ODT240 C: Input with 240 ohm ODT.

To generate this complete IBIS file, the following changes were made to temp _ddr5 sdram.ibs
using a text editor:

* Created one pin with a signal name of DQ1 sdram and model_name of dqg.

* Added two drivers with Model_type of I/O and named them POD11 10 7034 ODTOFF and
POD11 IO Z048 ODTOFF, respectively.

* Added seven receiver models and named them:
a) POD11 IN ODT34 C

b) POD11 IN ODT40 C

c) POD11 IN ODT48 C

d) POD11 IN ODT60 C

e) POD11 IN ODT80 C

f) POD11 IN ODT120 C

g) POD11 IN ODT240 C

* Added VI curves and Algorithmic Model sections to all above mentioned models.
* Added a Model Selector section that references all above mentioned models.

Test Generated IBIS-AMI Models

The DDR5 transmitter and receiver IBIS-AMI models are now complete and ready to be tested in any
industry-standard AMI model simulator.

References
[1]1 IBIS 7.0 Specification, https://ibis.org/ver7.0/ver7 0.pdf.

[2] SiSoft Support Knowledge Base Article: DDR4 Registered - Rawcard B for 3 slot system, https://
sisoft.nal.teamsupport.com/knowledgeBase/8976521.

See Also
DFECDR | SerDes Designer | VGA

More About
. “DDR5 Controller Transmitter/Receiver IBIS-AMI Model” on page 7-49
. “Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training” on page 7-78

External Websites

. https://www.sisoft.com/support/

https://ibis.org/ver7.0/ver7_0.pdf
https://sisoft.na1.teamsupport.com/knowledgeBase/8976521
https://sisoft.na1.teamsupport.com/knowledgeBase/8976521
https://www.sisoft.com/support/

DDRS5 Controller Transmitter/Receiver IBIS-AMI Model

DDR5 Controller Transmitter/Receiver IBIS-AMI Model

This example shows how to create generic DDR5 transmitter and receiver IBIS-AMI models using the
library blocks in SerDes Toolbox™ and have been Verified by Intel®. Since DDR5 DQ signals are
bidirectional, this example creates Tx and Rx models for the controller. The generated models
conform to the IBIS-AMI specification.

DDRS5 Controller Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up and explores the target transmitter and receiver architectures
using the blocks required for DDR5 in the SerDes Designer app. The SerDes system is then exported
to Simulink® for further customization and IBIS-AMI Model generation.

Type the following command in the MATLAB® command window to open the ddr5 controller
model:

>> serdesDesigner('ddr5 controller')

Tx Rx
| | DFE /
.—t FFE H D J Channel L [>. H CTLE H CDR J—~
FFE AnalogQut Channel Analogin CTLE DFECDR

The controller has a DDR5 transmitter (Tx) using 4-tap feed forward equalization (FFE). The
controller also has a DDRb5 receiver (Rx) using a continuous time linear equalizer (CTLE) with 8 pre-
defined settings and a 4-tap decision feedback equalizer (DFE) with built-in clock data recovery.

Configuration Setup

* Symbol Time is set to 208. 3 ps, since the target operating rate is 4.8 Gbps for DDR5-4800.

+ Target BER is set to 100e-18.

* Signaling is set to Single-ended.

* Samples per Symbol and Modulation are kept at default values, which are respectively 16 and
NRZ (nonreturn to zero), respectively.

Transmitter Model Setup

* The Tx FFE block is set up for one pre-tap, one main-tap, and two post-taps by including four tap
weights. This is done with the array [0 1 0 0], where the main tap is specified by the largest value
in the array. Tap ranges will be added later in the example when the model is exported to
Simulink.

* The Tx AnalogOut model is set up so that Voltage is 1.1V, Rise time is 100 ps, R (output
resistance) is 50 ohms, and C (capacitance) is 0.65 pF. The actual analog models used in the
final model will be generated later in this example.

7-49

7

Industry Standard IBIS-AMI Models

7-50

Channel Model Setup

Single-ended impedance is set to 40 ohms.
Target Frequency is set to 2.4 GHz, which is the Nyquist frequency for 4.8 GHz
Channel loss is set to 5 dB at Nyquist, which is typical of DDR channels.

Receiver Model Setup

The Rx AnalogIn model is set up so that R (input resistance) is 40 Ohms and C (capacitance) is
0.65pF. The actual analog models used in the final model will be generated later in this example.

The CTLE block is set up for 8 configurations. The Specification is set to DC Gain and AC
Gain. DC Gain issetto [0 -1 -2 -3 -4 -5 -6 -7] dB. Peaking frequency is set to 2.4 GHz.
All other parameters are kept at their default values.

The DFECDR block is set up for four DFE taps by including four Initial tap weights set to 0. The
Minimum tap value issetto [-0.2 -0.1 -0.1 -0.1] V and the Maximum tap value is set
to[0.2 0.1 0.1 0.1]V.

Note: the DFECDR offers an option for "2X Taps." Check this option to have pulse response values
match convention used by JEDEC. Uncheck this option to use pulse response values directly from
the plot.

Mame: DFECDR
Mode |adapt o
Initial tap weights (W) |[0 0 0 0]
Minimum tap value (V) |[-0.2 -0.1 -0.1 -0.1]
Maximum tap value 0V [[0.2 0.1 0.1 0.1]

2 tap weights

Plot Statistical Results

Use the SerDes Designer Add Plots button to visualize the results of the DDRS5 Controller setup.

Add the BER plot from Add Plots and observe the results.

DDRS5 Controller Transmitter/Receiver IBIS-AMI Model

[Probability |

0 20 40 a0 80 100 120 140 160 180 200
[ps]

Add the Pulse Response plot from Add Plots and zoom into the pulse area to observe the results.

7-51

7 Industry Standard IBIS-AMI Models

Pulse Response

08 F T T T T T T T T 7]
Unegualized
Equalized .

0.6 Iﬁ 1
0.5 ||
> 041

0.3] -

D.z_ | -
|

[s] %107
Export SerDes System to Simulink

Click Save and then click on the Export button to export the configuration to Simulink for further
customization and generation of the AMI model executables.

DDR5 Controller Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customizes it as required for DDR5 in Simulink.

Review the Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel
and Rx blocks. All the settings from the SerDes Designer app have been transferred to the Simulink
model. Save the model and review each block setup.

Cenfiguratior

D1 o o1 D1
| Waveln Tx WaveOut 4’{ Waveln Analog Channel WaveOu! P Waveln Rx WaveOut »

Eve Diagram

7-52

DDRS5 Controller Transmitter/Receiver IBIS-AMI Model

* Double-click the Configuration block to open the Block Parameters dialog box. The parameter
values for Symbol time, Samples per symbol, Target BER, Modulation, and Signaling are
carried over from the SerDes Designer app.

* Double-click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS
(pseudorandom binary sequence) order and the number of symbols to simulate. This block is not
carried over from the SerDes Designer app.

* Double-click the Tx block to look inside the Tx subsystem. The subsystem has the FFE block
carried over from the SerDes Designer app. An Init block is also introduced to model the
statistical portion of the AMI model.

* Double-click the Analog Channel block to open the Block Parameters dialog box. The parameter
values for Target frequency, Loss, Impedance and Tx/Rx Analog Model parameters are
carried over from the SerDes Designer app.

* Double-click on the Rx block to look inside the Rx subsystem. The subsystem has the CTLE and
DFECDR blocks carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

Run the Model
Run the model to simulate the SerDes system.

Two plots are generated. The first is a live time domain (GetWave) eye diagram that is updated as the
model is running.

4. Eye Diagram — O x

File Tools View Help k]

@-a ®k 2-a-|E|H-| - B

V]
E
=1
E
=
m

Ready T=417e-07

After the simulation has completed the second plot contains views of the Statistical (Init) and Time
Domain (GetWave) results, along with Eye metrics reported for each.

7-53

7 Industry Standard IBIS-AMI Models

|4 Init Statistical and Time Demain Analysis Results — O >
Eile Edit ¥iew [Insert Tools Desktop Window Help E
E EEEIDYE:

Stat Analysis

Pulse Response

0.6

Unequalized
Equalized

0.4

(V]

150

100
[ps]

Time Domain Analysis
Time Domain Eye

[Probakility]

[Probakility]

Waveform Derwed from Pulse Response

h
| ‘I

i i |

i

Al

—_—— e ———

Unegqualized
Equalized

0.5

0 0.5 2 2.5 a
[5] <1078

Statistical Metric | Data |

Eye Height (V) 0.5773

Eye Width (ps) 193.6539

Eye Area (V*ps) 67.3679

CoM 19.13598

VEC 1.0100

Time Dormnain Metric Data

Eye Height (V) 0.5830

Eye Width (ps) 192.0266

Eye Area (V*ps) 694273

COoM 205194

VEC 0.8450

Minimum BER 5.2632e-04

Review Tx FFE Block

* Inside the Tx subsystem, double-click the FFE block to open the FFE Block Parameters dialog box.

* The Tap Weights are carried over from the SerDes Designer app.

Review Rx CTLE Block

* Inside the Rx subsystem, double-click the CTLE block to open the CTLE Block Parameters dialog

box.

* DC gain, AC gain, and Peaking frequency are carried over from the SerDes Designer app.

7-54

DDRS5 Controller Transmitter/Receiver IBIS-AMI Model

* CTLE Mode is set to Adapt, which means an optimization algorithm built into the CTLE system
object selects the optimal CTLE configuration at run time.

Update Rx DFECDR Block
* Inside the Rx subsystem, double-click the DFECDR block to open the DFECDR Block Parameters

dialog box.

* The Initial tap weights, Minimum DFE tap value, and Maximum tap value RMS settings are
carried over from the SerDes Designer app. The Adaptive gain and Adaptive step size are set to
3e-06 and le- 06, respectively, which are reasonable values based on DDR5 Controller
expectations.

* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

* Deselect Phase offset and Reference offset to remove these parameters from the AMI file,
effectively hard-coding these parameters to their current values.

Generate DDR5 Controller IBIS-AMI Models

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
a DDR5 Controller, and then generates IBIS-AMI-compliant DDR5 Controller model executables, IBIS
and AMTI files.

Open the Block Parameter dialog box for the Configuration block and click on the Open SerDes
IBIS-AMI Manager button. In the IBIS tab inside the SerDes IBIS-AMI manager dialog box, the
analog model values are converted to standard IBIS parameters that can be used by any industry-
standard simulator.

Update Transmitter (Tx) AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS-AMI manager dialog box. The reserved parameters are listed
first followed by the model-specific parameters adhering to the format of a typical AMI file.

Set Pre-Emphasis Tap

* Highlight TapWeight -1

* Click the Edit... to launch the Add/Edit Parameter dialog box.

* Make sure Format is set to Range and set Typ = 0, Min = -0.2, and Max = 0. 2.
* Click OK to save the changes.

Set Main Tap
* Highlight TapWeight 0.
* Click the Edit... button to launch the Add/Edit Parameter dialog box.

* Make sure Format is set to Range and set Typ = 1, Min = 0.6, and Max = 1.
+ Click OK.

Set First Post-Emphasis Tap

* Highlight TapWeight 1.
* Select the Edit... button to launch the Add/Edit Parameter dialog box.
* Make sure Format is set to Range and set Typ = 0, Min = -0.2, and Max = 0. 2.

7-35

7 Industry Standard IBIS-AMI Models

* Click OK.
Set Second Post-Emphasis Tap

* Highlight TapWeight 2.

* Select the Edit... button to launch the Add/Edit Parameter dialog box.

* Make sure Format is set to Range and set Typ = 0, Min= -0.1, and Max = 0. 1.
» Click OK.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model click the Reserved Parameters... button to bring up the
Tx Add/Remove Jitter&Noise dialog, select the Tx_Dj and Tx_Rj boxes and click OK to add these
parameters to the Reserved Parameters section of the Tx AMI file. The following jitter values can be
adjusted to meet the DDR5 mask requirements for a specific controller.

Set Tx Deterministic Jitter Value

» Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Change the Type to UI.

* Change the Format to Value.

* Set the Current Value to 0.0500

* Click OK to save the changes.

Set Tx Random Jitter Value

* Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Change the Type to UI.

* Change the Format to Value.

* Set the Current Value to 0.0025

* Click OK to save the changes.

Update Receiver (Rx) AMI Parameters

Open the AMI-Rx tab in the SerDes IBIS-AMI manager dialog box. The reserved parameters are
listed first followed by the model-specific parameters adhering to the format of a typical AMI file.

Set First DFE Tap Weight

* Highlight TapWeight 1.

* Click the Edit... button to launch the Add/Edit Parameter dialog box.

* Make sure Format is set to Range and set Typ = 0, Min = -0.2, and Max = 0.05.
* Click OK.

Set Second DFE Tap Weight

* Highlight TapWeight 2.
* Click the Edit... button to launch the Add/Edit Parameter dialog box.
* Make sure Format is set to Range and set Typ = 0, Min = -0.075, and Max = 0.075.

7-56

DDRS5 Controller Transmitter/Receiver IBIS-AMI Model

* Click OK.
Set Third DFE Tap Weight

* Highlight TapWeight 3.

* Click the Edit... button to launch the Add/Edit Parameter dialog box.

* Make sure Format is set to Range and set Typ = 0, Min = -0.06, and Max = 0.06.
+ Click OK.

Set Fourth DFE Tap Weight

* Highlight TapWeight 4.

* Click the Edit... button to launch the Add/Edit Parameter dialog box.

* Make sure Format is set to Range and set Typ = 0, Min = -0.045, and Max = 0. 045.
* Click OK.

Add Rx Jitter and Noise Parameters

To add Jitter parameters for the Rx model click the Reserved Parameters... button to bring up the
Rx Add/Remove Jitter&Noise dialog, select the Rx_Receiver_Sensitivity, Rx_Dj, Rx_Noise,
Rx_UniformNoise and Rx_Rj boxes and click OK to add these parameters to the Reserved
Parameters section of the Rx AMI file. The following jitter and noise values can be adjusted to meet
the DDR5 mask requirements for a specific controller.

Set Rx Random Jitter Value

* Select Rx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Change the Type to UI.

* Change the Format to Value.

* Set the Current Value to 0.00375

* Click OK to save the changes.

Set Rx Deterministic Jitter Value

* Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Change the Type to UI.

* Change the Format to Value.

* Set the Current Value to 0.0125

* Click OK to save the changes.

Set Rx Receiver Sensitivity Value

* Select Rx_Receiver_Sensitivity, then click the Edit... button to bring up the Add/Edit AMI
Parameter dialog.

* Change the Format to Value.

* Set the Current Value to 0.040

* Click OK to save the changes.

7-357

7 Industry Standard IBIS-AMI Models

Set Rx Gaussian Noise Value

* Select Rx_Noise, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.

* Change the Format to Value.

* Set the Current Value to 0.0015

* Click OK to save the changes.

Set Rx Uniform Noise Value

* Select Rx_UniformNoise, then click the Edit... button to bring up the Add/Edit AMI Parameter
dialog.

* Change the Format to Value.

* Set the Current Value to 0.0025

* Click OK to save the changes.

Export Models
Open the Export tab in the SerDes IBIS-AMI manager dialog box.

* Update the Tx model name to ddr5 controller tx
* Update the Rx model name to ddr5 controller rx

* Note that Tx and Rx corner percentage is set to 10. This scales the minimum/maximum analog
model corner values by +/-10%.

* Verify that Dual model is selected for both the Tx and the Rx AMI model settings. This creates
model executables that support both statistical (Init) analysis and time-domain (GetWave)
simulation.

* Set the Tx model Bits to ignore to 4 since there are four taps in the Tx FFE.

* Set the Rx model Bits to ignore to 250000 (is 10000 enough?-GK) to allow sufficient time
for the Rx DFE taps to settle during time domain simulations.

» Verify that both Tx and Rx are set to export and that all files have been selected to be generated
(IBIS file, AMI file(s) and DLL file(s)).

* Set the IBIS file name to temp ddr5 controller.ibs directory so that the example file
ddr5 _controller.ibs is not overwritten.

* Click the Export button to generate models in the Target directory.
Update DDR5 Analog Models

To accommodate different topologies, loading configurations, data rates and transfers, DDR5 requires
variable output drive strength and input on-die termination (ODT). While the same algorithmic AMI
model is used, multiple analog models are required to cover all these use cases. The generation of
these analog models is out of scope for this example, so a completed IBS file with the following
analog models in it is available in the current example directory:

+ POD11 IO ZO50 ODTOFF: 50 ohm output impedance with no input ODT.

+ POD11 IN ODT40 C: Input with 40 ohm ODT.

+ POD11 IN ODT60 C: Input with 60 ohm ODT.

To generate this complete IBIS file, the following changes were made to ddr5 controller.ibs using a
text editor:

7-58

DDRS5 Controller Transmitter/Receiver IBIS-AMI Model

* Created one pin with a signal name of DQ1 controller and model name of dq.
* Changed the driver Model type to I/O and named it POD11 10 Z050 ODTOFE.

* Added two receiver models and named them POD11 IN ODT40 C and POD11 IN ODT60 C,
respectively.

* Added VI curves and Algorithmic Model sections to all above mentioned models.
* Added a Model Selector section that references the above mentioned models.

Note: It is always recommended to verify the values for vinl, vinh, ¢ comp and other variables in
the .ibs file match your device datasheet values.

Test Generated IBIS-AMI Models

The DDR5 transmitter and receiver IBIS-AMI models are now complete and ready to be tested in any
industry-standard AMI model simulator.

References
[1]1IBIS 7.0 Specification, https://ibis.org/ver7.0/ver7 0.pdf.

[2] SiSoft Support Knowledge Base Article: DDR4 Registered - Rawcard B for 3 slot system, https://
sisoft.nal.teamsupport.com/knowledgeBase/8976521.

See Also
AGC | CTLE | DFECDR | FFE | SerDes Designer

More About
. “DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model” on page 7-37
. “Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training” on page 7-78

External Websites

. https://www.sisoft.com/support/

7-59

https://ibis.org/ver7.0/ver7_0.pdf
https://sisoft.na1.teamsupport.com/knowledgeBase/8976521
https://sisoft.na1.teamsupport.com/knowledgeBase/8976521
https://www.sisoft.com/support/

7

Industry Standard IBIS-AMI Models

CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

7-60

This example shows how to create generic CEI-56G-LR transmitter and receiver IBIS-AMI models
using the library blocks in SerDes Toolbox™. The generated models conform to the IBIS-AMI and OIF-

CEI-04.0 specifications.
CEI-56G-LR Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up the target transmitter and receiver AMI model architecture
using the datapath blocks required for CEI-56G in the SerDes Designer app. The model is then
exported to Simulink® for further customization.

This example uses the SerDes Designer model cei 56G Ir txrx. Type the following command in the
MATLAB® command window to open the model:

>> serdesDesigner('cei 56g lr txrx')

Tx Rx
| DFE /
.—t FFE D tt:har~ne|J~~[D H CTLE H CDR J—~
FFE AnalogOut Channel Analogln CTLE DFECDR

A CEI-56G-LR compliant transmitter uses a 4-tap feed forward equalizer (FFE) with two pre-taps and
one post-tap. The receiver model uses a continuous time linear equalizer (CTLE) with 17 pre-defined
settings, and a 12 to 18 tap decision feedback equalizer (DFE). To support this configuration the
SerDes System is set up as follows:

Configuration Setup

* Symbol Time is set to 35.71 ps, for a symbol rate of 28 GBaud and a PAM4 rate of 56 Gbps.

+ Target BER is set to 100e-6, which assumes a compliant receiver with FEC.

* Modulation is set to PAMA4.

* Samples per Symbol and Signaling are kept at default values, which are respectively 16 and
Differential.

Transmitter Model Setup

* The Tx FFE block is set up for two pre-taps and one post-tap by including four tap weights, as
specified in the OIF-CEI-04.0 specification. This is done with the array [0 0 1 0], where the main
tap is specified by the largest value in the array.

* The Tx AnalogOut model is set up so that Voltage is 1.0 V, Rise time is 2.905 ps, R (single-ended
output resistance) is 50 Ohms, and C (capacitance) is 0.16 pF.

Channel Model Setup

e Channel loss is set to 20 dB.

CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

[BER |

+ Differential impedance is kept at default 100 Ohms.
+ Target Frequency is set to the Nyquist frequency, 14 GHz.

Receiver Model Setup

* The Rx AnalogIn model is set up so that R (single-ended input resistance) is 50 Ohms and C
(capacitance) is 0.16 pFE.

* The Rx CTLE block is set up for 147 configurations using the GPZ (Gain Pole Zero) matrix.
» The Rx DFE/CDR block is set up for 18 DFE taps. The limits for the taps are setto -0.7 to 0.7.

Plot Statistical Results
Use the SerDes Designer plots to visualize the results of the CEI-56G-LR setup.

Add the BER plot from Add Plots and observe the results.

BER .
0.1 . - 10°

[Probability]

0.1 ,]D-ES-

[ps]

Add the report from Add Plots and observe that the CTLE Config is 129.

Change the Rx CTLE Mode parameter to fixed and the ConfigSelect parameter value from 129 to
8 and observe how this changes the data eye.

7-61

7 Industry Standard IBIS-AMI Models

| BER | Report [

'u
y
!.’.

b
r

'ﬂsén
|‘,/' :';

i |

{NooanniY |

)

1R IRy

;ii‘/!

|

i
iy
i
il ik
{
b

O -
i

I
!\ﬂ*
ikl
[Probability |

)

1
TN

Before continuing, reset the value of Rx CTLE Mode back to adapt. Resetting here will avoid the
need to set it again after the model has been exported to Simulink.

Export SerDes System to Simulink

Click on the Export button to export the above configuration to Simulink for further customization
and generation of the AMI model executables.

CEI-56G-LR Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customizes it as required for CEI-56G-LR in Simulink.

Review Simulink Model Setup
The SerDes System exported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel

and Rx blocks. All the settings from the SerDes Designer app have been transferred to the Simulink
model. Save the model and review each block setup.

7-62

CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

Configuration

Stimulus

WavaOut

Waveln

Tx

WaveOut

Waneln

Rx

WaveOut

Waveln Analog Channel WavaOut

Eye Dizgram

Double click the Configuration block to open the Block Parameters dialog box. The parameter
values for Symbol time, Samples per symbol, Target BER, Modulation and Signaling are
carried over from the SerDes Designer app.

Double click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS
(pseudorandom binary sequence) order and the number of symbols to simulate. The settings for
this block are not carried over from the SerDes Designer app.

Double click the Tx block to look inside the Tx subsystem. The subsystem has the FFE block
carried over from the SerDes Designer app. An Init block is also introduced to model the
statistical portion of the AMI model.

Double click the Analog Channel block to open the Block Parameters dialog box. The parameter
values for Target frequency, Loss, Impedance and Tx/Rx analog model parameters are carried
over from the SerDes Designer app.

Double click on the Rx block to look inside the Rx subsystem. The subsystem has the CTLE and

DFECDR blocks carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

Run the Model

Run the model to simulate the SerDes System.

Two plots are generated. The first is a live time domain (GetWave) eye diagram that is updated as the
model is running.

7-63

7 Industry Standard IBIS-AMI Models

'

File Tools View Help

@- =5 OP® - a5 B - E

ik}
'[E
=1

E

=

™
i
fid

T=7.142-08 |

Ready

After the simulation has completed the second plot contains views of the statistical (Init) and time
domain (GetWave) results, similar to what is available in the SerDes Designer App.

7-64

CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

4| Init Statistical and Time Domain Analysis Results

Eile Edit ¥iew [Insert Tools Desktop Window Help
=3 = i
D de | @ 08| kE
Stat Analysis
Pulse Response
0.3 - - .
Unequalized
0.2 Equalized
= 0.1
]
0.1
0 1 2 3 4 S
[s] 10
Statistical E
0.1 ye 10f

Time Domain Analysis
Time Domain Eye

[Probakbility]

[Probakbility]

(V]

Waveform Derived from Pulse Response

0.4
Unegqualized
o 2 | Equalizcldl
: lln .ﬂ" | ||| W I |J rhlf'lﬂl
of WJI' l-*ﬂ ﬂr | l| ' "r letl‘ ,tb '1:““,' ‘p,r- l.rlﬂ&u U N
n- W ! il
| I\ M l|| | | '-||

ozp VLYY :

0 1 2 a 4 5

[s] 10

Statistical Metric Data

Eye Height Upper (V) 0.0185

Eye Height Center (V) 0.0185

Eye Height Lower (V) 0.0195

Eye Width Upper (ps) 12.2089

Eve Width Center (ps) 13.7537

Eye Width Lower (ps) 12.2089

Eye Area Upper (W= .. 01878

Eye Area Center (W=... 0.2048

Eve Area Lower (W=.. D.187a

COM 6.2004

Time Dormain Metric Data

Eye Height Upper (V) 0.0042

Eye Height Center (W) 0.0028

Eye Height Lower (V) 0.0020

Eye Width Upper (ps) 6.0105

Eye Width Center (ps) 58711

Eye Width Lower (ps) 48170

Eye Area Upper (Wps) 0.0051

Eye Area Center (W= .. 0.0198

Eye Area Lower (V= 0.0042

COomM 0.4%41

Update Tx FFE Block

* Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters dialog box.
* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI

model.

* Deselect the Mode parameter to remove this parameter from the AMI file, effectively hard-coding
the current value of Mode in the final AMI model to Fixed.

7-65

7 Industry Standard IBIS-AMI Models

7-66

Review Rx CTLE Block

* Inside the Rx subsystem, double click the CTLE block to open the CTLE Block Parameters dialog
box.

* Gain pole zero data is carried over from the SerDes Designer app.

* CTLE Mode is set to Adapt, which means an optimization algorithm built into the CTLE system
object selects the optimal CTLE configuration at run time.

Update Rx DFECDR Block

* Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block Parameters
dialog box.

* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

* Deselect the Phase offset and Reference offset parameters to remove these parameters from
the AMI file, effectively hard-coding these parameters to their current values.
Generate CEI-56G-LR Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
CEI-56G-LR, then generates IBIS-AMI compliant CEI-56G-LR model executables, IBIS and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the SerDes IBIS-AMI
Manager button. In the IBIS tab inside the SerDes IBIS-AMI manager dialog box, the analog model
values are converted to standard IBIS parameters that can be used by any industry standard
simulator. In the AMI-Tx and AMI-Rx tabs in the SerDes IBIS-AMI manager dialog box, the reserved
parameters are listed first followed by the model specific parameters following the format of a typical
AMI file.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model, in the AMI-Tx tab click the Reserved Parameters...
button to bring up the Tx Add/Remove Jitter&Noise dialog, select the Tx_DCD, Tx_Dj and Tx_Rj
boxes and click OK to add these parameters to the Reserved Parameters section of the Tx AMI file.
The following ranges allow you to fine-tune the jitter values to meet CEI-56G-LR jitter mask
requirements.

Set Tx DCD Jitter Value

* Select Tx_DCD, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0.

* Change the Type to UI.

* Change the Format to Range.

* Set the Typ value to 0.

* Set the Min value to 0.

* Set the Max valueto 0.1

* Click OK to save the changes.

Set Tx Dj Jitter Value
» Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.

CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

Set the Current Value to 0.0.
Change the Type to UI.
Change the Format to Range.
Set the Typ value to 0.

Set the Min value to 0.

Set the Max value to 0.1
Click OK to save the changes.

Set Tx Rj Jitter Value

Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
Set the Current Value to 0. 0.

Change the Type to UI.

Change the Format to Range.

Set the Typ value to 0.

Set the Min value to 0.

Set the Max value to 0.05

Click OK to save the changes.

Export Models

Select the Export tab in the SerDes IBIS-AMI manager dialog box.

Update the Tx model name to cei 56g lr tx
Update the Rx model name to cei 569 lr_ rx

Note that the Tx and Rx corner percentage is set to 10%. This will scale the min/max analog
model corner values by +/-10%.

Verify that Dual model is selected for both the Tx and the Rx. This will create model executables
that support both statistical (Init) and time domain (GetWave) analysis.

Set the Tx model Bits to ignore value to 4 since there are four taps in the Tx FFE.

Set the Rx model Bits to ignore value to 200000 to allow sufficient time for the Rx DFE taps to
settle during time domain simulations.

Verify that Both Tx and Rx are set to Export and that all files have been selected to be generated
(IBIS file, AMI files and DLL files).

Set the IBIS file name to be cei 569 lr serdes.ibs
Press the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Models

The CEI-56G-LR transmitter and receiver IBIS-AMI models are now complete and ready to be tested
in any industry standard AMI model simulator.

References

[1]1IBIS 6.1 Specification, https://ibis.org/ver6.1/ver6 1.pdf.

7-67

https://ibis.org/ver6.1/ver6_1.pdf

7 Industry Standard IBIS-AMI Models

[2] SiSoft Support Knowledge Base Article: CEI-56G-LR, https://sisoft.nal.teamsupport.com/
knowledgeBase/11501730.

See Also
CTLE | DFECDR | FFE | SerDes Designer

More About
. “Managing AMI Parameters” on page 6-2

External Websites

* https://www.sisoft.com/support/

7-68

https://sisoft.na1.teamsupport.com/knowledgeBase/11501730
https://sisoft.na1.teamsupport.com/knowledgeBase/11501730
https://www.sisoft.com/support/

USB3.1 Transmitter/Receiver IBIS-AMI Model

USB3.1 Transmitter/Receiver IBIS-AMI Model

This example shows how to create generic Universal Serial Bus version 3.1 (USB3.1) transmitter and
receiver IBIS-AMI models using the library blocks in SerDes Toolbox™. The generated models
conform to the IBIS-AMI and USB3.1 specifications.

USB3.1 Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up the target transmitter and receiver AMI model architecture
using the datapath blocks required for USB3.1 in the SerDes Designer app. The model is then
exported to Simulink® for further customization.

This example uses the SerDes Designer model usb3 1 txrx ami. Type the following command in the
MATLAB® command window to open the model:

>> serdesDesigner('usb3 1 txrx ami')

Tx Rx
| DFE /
.—t FFE D tChar‘nelJ~~[D H CTLE H COR J—~
FFE AnalogQut Channel Analogin CTLE DFECDR

A USB3.1 compliant transmitter uses a 3-tap feed forward equalizer (FFE) with one pre-tap and one
post-tap. The receiver model uses a continuous time linear equalizer (CTLE) with seven pre-defined
settings, and a 1-tap decision feedback equalizer (DFE). To support this configuration the SerDes
System is set up as follows:

Configuration Setup

* Symbol Time is set to 100 ps, since the maximum allowable USB3.1 operating frequency is 10
GHz.
* Target BER is set to 1e-12 as specified in the USB3.1 specification.

* Samples per Symbol, Modulation, and Signaling are kept at default values, which are
respectively 16, NRZ (non-return to zero), and Differential.

Transmitter Model Setup

* The Tx FFE block is set up for one pre- and one post-tap by including three tap weights, as
specified in the USB3.1 specification. This is done with the array [0 1 0], where the main tap is
specified by the largest value in the array.

* The Tx AnalogOut model is set up so that Voltage is 1.00 V, Rise time is 60 ps, R (single-ended
output resistance) is 50 Ohms, and C (capacitance) is 0.5 pF.

Channel Model Setup

e Channel loss is set to 15dB.

7-69

7 Industry Standard IBIS-AMI Models

» Differential impedance is kept at default 100 Ohms.
+ Target Frequency is set to the Nyquist frequency, 5 GHz.

Receiver Model Setup

* The Rx AnalogIn model is set up so that R (single-ended input resistance) is 50 Ohms and C
(capacitance) is 0.5 pE.

* The Rx CTLE block is set up for 7 configurations. The GPZ (Gain Pole Zero) matrix data is derived
from the transfer function given in the USB3.1 Behavioral CTLE specification.

* The Rx DFE/CDR block is set up for one DFE tap. The limits for the tap are as defined by the
USB3.1 specification: +/-50 mV.

Plot Statistical Results
Use the SerDes Designer plots to visualize the results of the USB3.1 setup.
Add the BER plot from ADD Pleots and observe the results.

BER

[Probability]

[ps]

Change the Rx CTLE Mode parameter from adapt to fixed and change the ConfigSelect
parameter value from 6 to 0 and observe how this changes the data eye.

7-70

USB3.1 Transmitter/Receiver IBIS-AMI Model

BER
10?
107"
2 —
102 3
=
m
]
5]
o
1072 —
107
10™3
0 10 20 30 40 50 60 70 80)
[ps]

Before continuing, reset the value of Rx CTLE Mode back to adapt. Resetting the value here will
avoid the need to set it again after the model has been exported to Simulink.

Export SerDes System to Simulink

Click on the Export button to export the above configuration to Simulink for further customization
and generation of the AMI model executables.

USB3.1 Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customizes it as required for USB3.1 in Simulink.

Review Simulink Model Setup
The SerDes System imported into Simulink consists of the Configuration, Stimulus, Tx, Analog

Channel and Rx blocks. All the settings from the SerDes Designer app have been transferred to the
Simulink model. Save the model and review each block setup.

7-71

7 Industry Standard IBIS-AMI Models

Configuration

==

Stimulus WavaOut o iavein Tx WiaweOul | Wizvaln Analog Channel WawveOut o iavein Rx WiaveOut gl —

7-72

Eye Diagram

* Double click the Configuration block to open the Block Parameters dialog box. The parameter
values for Symbol time, Samples per symbol, Target BER, Modulation and Signaling are
carried over from the SerDes Designer app.

* Double click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS
(pseudorandom binary sequence) order and the number of symbols to simulate. This block is not
carried over from the SerDes Designer app.

* Double click the Tx block to look inside the Tx subsystem. The subsystem has the FFE block
carried over from the SerDes Designer app. An Init block is also introduced to model the
statistical portion of the AMI model.

* Double click the Analog Channel block to open the Block Parameters dialog box. The parameter
values for Target frequency, Loss, Impedance and Tx/Rx Analog Model parameters are
carried over from the SerDes Designer app.

* Double click on the Rx block to look inside the Rx subsystem. The subsystem has the CTLE and
DFECDR blocks carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

Run the Model
Run the model to simulate the SerDes System.

Two plots are generated. The first is a live time domain (GetWave) eye diagram that is updated as the
model is running.

USB3.1 Transmitter/Receiver IBIS-AMI Model

4. Eye Diagram — O *

File Tools VWiew Help u
@- a8 0o0rP® - a- B B L- EH

After the simulation has completed the second plot contains views of the statistical (Init) and time
domain (GetWave) results, similar to what is available in the SerDes Designer App.

7-73

7 Industry Standard IBIS-AMI Models

|4 Init Statistical and Time Demain Analysis Results — O >
Eile Edit ¥iew [Insert Tools Desktop Window Help E
NEde |3 08| 5 E

Stat Analysis

Pullse Respolnse . 05 Waveform Derived from Pulse IRespolnse
06 Unequalized Unegqualized
Equalized } Equalized
04 ! Hl ""M VH
Ef"\\” H |‘1|
| - v
0= -0.5
0 1 2 3 4 5 0 0.2 0.4 0.6 0.8 1 1.2 1.4
(s] x10% [s] %107
0.5 Statistical Eye 100 Statistical Metric | Data |
B o Eye Height (V) 0.3053
- Eye Width (p=) 72,6030
E Eye Area (V*ps) 18,7477
a CoM 59600
E VEC 5.0818
=
0 20 40 60 80
[ps]
Time Domain Analysis
Time Domain Eye 0 Tirne Domain Metric Data
0. ' ' ' | 10 Eye Height (V) 0.3300
Eye Width (ps) 76.9533
= Eye Area (Vps) 16.5709
= % COM 67133
= E WEC 53743
o Minimum BER 5.2632e-04
[Ps]

Update Tx FFE Block

* Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters dialog box.

* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

* Deselect the Mode parameter to remove this parameter from the AMI file, effectively hard-coding
the current value of Mode in the final AMI model to Fixed.

7-74

USB3.1 Transmitter/Receiver IBIS-AMI Model

Review Rx CTLE Block
* Inside the Rx subsystem, double click the CTLE block to open the CTLE Block Parameters dialog
box.

* Gain pole zero data is carried over from the SerDes Designer app. This data is derived from the
transfer function given in the USB3.1 Behavioral CTLE specification.

* CTLE Mode is set to Adapt, which means an optimization algorithm built into the CTLE system
object selects the optimal CTLE configuration at run time.

Update Rx DFECDR Block

* Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block Parameters
dialog box.

* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

* Deselect the Phase offset and Reference offset parameters to remove these parameters from
the AMI file, effectively hard-coding these parameters to their current values.
Generate USB3.1 Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
USB3.1, then generates IBIS-AMI compliant USB3.1 model executables, IBIS and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the SerDes IBIS-AMI
Manager button. In the IBIS tab inside the SerDes IBIS-AMI manager dialog box, the analog model
values are converted to standard IBIS parameters that can be used by any industry standard
simulator. In the AMI-Tx and AMI-Rx tabs in the SerDes IBIS-AMI manager dialog box, the reserved
parameters are listed first followed by the model specific parameters following the format of a typical
AMI file.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model, in the AMI-Tx tab click the Reserved Parameters...
button to bring up the Tx Add/Remove Jitter&Noise dialog, select the Tx_Dj and Tx_Rj boxes and
click OK to add these parameters to the Reserved Parameters section of the Tx AMI file. The
following ranges allow you to fine-tune the jitter values to meet USB3.1 jitter mask requirements.

Set Tx Dj Jitter Value

* Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0.

* Change the Type to UI.

* Change the Format to Range.

* Set the Typ value to 0.

* Set the Min value to 0.

* Set the Max value to 0.17

* Click OK to save the changes.

Set Tx Rj Jitter Value
» Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.

7-75

7 Industry Standard IBIS-AMI Models

7-76

Set the Current Value to 0.0.
Change the Type to UI.
Change the Format to Range.
Set the Typ value to 0.

Set the Min value to 0.

Set the Max value to 0.012
Click OK to save the changes.

Add Rx Jitter and Noise Parameters

To add Jitter parameters for the Rx model, in the AMI-Rx tab click the Reserved Parameters...
button to bring up the Rx Add/Remove Jitter&Noise dialog, select the Rx_Receiver_Sensitivity,
Rx_Dj and Rx_Rj boxes and click OK to add these parameters to the Reserved Parameters section of
the Rx AMI file. The following ranges allow you to fine-tune the jitter values to meet USB3.1 jitter
mask requirements.

Set Rx Receiver_Sensitivity Value

Select Rx_Receiver_Sensitivity,
Parameter dialog.

Set the Current Value to 0.025
Change the Format to Range.
Set the Typ value to 0.025

Set the Min value to 0.015

Set the Max value to 0.100
Click OK to save the changes.

Set Rx Dj Jitter Value

Select Rx_Dj, then click the Edit
Set the Current Value to 0. 0.
Change the Type to UI.

Change the Format to Range.
Set the Typ value to 0.

Set the Min value to 0.

Set the Max value to 0. 3

Click OK to save the changes.

Set Rx Rj Jitter Value

Select Rx_Rj, then click the Edit
Set the Current Value to 0. 0.
Change the Type to UI.

Change the Format to Range.
Set the Typ value to 0.

Set the Min value to 0.

then click the Edit... button to bring up the Add/Edit AMI

... button to bring up the Add/Edit AMI Parameter dialog.

... button to bring up the Add/Edit AMI Parameter dialog.

USB3.1 Transmitter/Receiver IBIS-AMI Model

* Set the Max value to 0.015
* Click OK to save the changes.

Export Models

Select the Export tab in the SerDes IBIS-AMI manager dialog box.

* Update the Tx model name to usb3 1 tx
* Update the Rx model name to ush3 1 rx

* Note that the Tx and Rx corner percentage is set to 10%. This will scale the min/max analog
model corner values by +/-10%.

» Verify that Dual model is selected for both the Tx and the Rx. This will create model executables
that support both statistical (Init) and time domain (GetWave) analysis.

* Set the Tx model Bits to ignore value to 3 since there are three taps in the Tx FFE.

* Set the Rx model Bits to ignore value to 20000 to allow sufficient time for the Rx DFE taps to
settle during time domain simulations.

» Verify that Both Tx and Rx are set to Export and that all files have been selected to be generated
(IBIS file, AMI files and DLL files).

* Set the IBIS file name to be usb3 1 serdes.ibs
* Press the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Models

The USB3.1 transmitter and receiver IBIS-AMI models are now complete and ready to be tested in
any industry standard AMI model simulator.

References
[1] USB, https://www.usb.org.
[2] IBIS 6.1 Specification, https://ibis.org/ver6.1/ver6 1.pdf.

[3] SiSoft Support Knowledge Base Article: USB-3.1, https://sisoft.nal.teamsupport.com/
knowledgeBase/8977326.

See Also
CTLE | DFECDR | FFE | SerDes Designer

More About
. “Managing AMI Parameters” on page 6-2

External Websites

. https://www.sisoft.com/support/

7-77

https://www.usb.org/
https://ibis.org/ver6.1/ver6_1.pdf
https://sisoft.na1.teamsupport.com/knowledgeBase/8977326
https://sisoft.na1.teamsupport.com/knowledgeBase/8977326
https://www.sisoft.com/support/

7 Industry Standard IBIS-AMI Models

Design DDR5 IBIS-AMI Models to Support Back-Channel Link
Training

This example shows how to create transmitter and receiver AMI models that support link training
communication (back-channel) using a similar method as the one defined in the IBIS 7.0 specification
by adding to the library blocks in SerDes Toolbox™ . This example uses a DDR5 write transfer
(Controller to SDRAM) to demonstrate the setup.

Introduction

IBIS 7.0 introduced the ability for models to perform link training, or auto-negotiation, by providing a
mechanism for the Tx and Rx AMI executable models to communicate during GetWave operation. A
link training algorithm can either emulate what the silicon is doing, or it can use channel analysis
methods to determine the optimal Tx and Rx equalization settings, then lock in those settings for the
remainder of the simulation.

Communications between the Tx and Rx executable models are in messages that both the Tx and Rx
executable models understand, and the EDA tool does not need to understand. These agreed upon
messages are called a Back-Channel Interface Protocol. The IBIS specification does not describe the
details of the Back-Channel Interface Protocol but only a method to make the communication work. In
this example we will be generating a new protocol named DDRx Write.

Currently, SerDes Toolbox does not support the IBIS-AMI back-channel interface reserved parameters
directly. Instead, it supports model specific parameters, which have " ST" appended to their name,
that perform a similar function. Since these model specific parameters do not use the same name as
the reserved parameters from the IBIS specification, they must be used either as a "matched set" or
with other back-channel models developed by SerDes Toolbox that support the same protocol. These
models should work well in any industry standard AMI model simulator.

DDR5 Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example starts with the DDR5 controller transmitter model from “DDR5
Controller Transmitter/Receiver IBIS-AMI Model” on page 7-49 and the SDRAM receiver AMI model
from “DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model” on page 7-37. We've added a few
additional pass-through blocks to support the back-channel communication and you will then export
the model to Simulink® for further customization.

Open the model DDR5 Write txrx_ ami by typing the following command in the MATLAB®
command window:

>> serdesDesigner('DDR5 Write txrx ami')

Tx Rx

._‘

Fass- Pass- DFE / Pass-
Through % s ﬂ D "“ T "ﬂ D Through S CDR Through [®
WVEA

Tx_BCI FFE AnalogOut Channel Analegin Rx_BCILR...

DFECDR R BCL...

7-78

For a write transaction, the transmitter (Tx) is a DDR5 controller using 3-tap feed forward
equalization (FFE), while the receiver (Rx) is using a variable gain amplifier (VGA) with 7 pre-defined

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

settings and a 4-tap decision feedback equalizer (DFE) with built-in clock data recovery. To support
this configuration the SerDes System is set up as follows:

Configuration Setup

* Symbol Time is set to 208. 3 ps, since the target operating rate is 4.8Gbps for DDR5-4800.

+ Target BER is set to 100e-18.

» Signaling is set to Single-ended.

* Samples per Symbol and Modulation are kept at default values, which are 16 and NRZ
(nonreturn to zero), respectively.

Transmitter Model Setup

* The Pass-Through block Tx BCI is a block used to support this back-channel implementation. The
operation of this block will be described later in this example.

* The Tx FFE block is set up for one pre-tap, one main-tap, and one post-tap by including three tap
weights. This is done with the array [0 1 0], where the main tap is specified by the largest value in
the array. Tap ranges will be added later in the example when the model is exported to Simulink.

* The Tx AnalogOut model is set up so that Voltage is 1.1V, Rise time is 100 ps, R (output
resistance) is 50 ohms, and C (capacitance) is 0.65 pF. The actual analog models used in the
final model will be generated later in this example.

Channel Model Setup

* Channel loss is set to 5 dB, which is typical of DDR channels.
* Single-ended impedance is set to 40 ohms.
+ Target Frequency is set to 2.4 GHz, which is the Nyquist frequency for 4.8 GHz

Receiver Model Setup

* The Rx AnalogIn model is set up so that R (input resistance) is 40 ohms and C (capacitance) is
0.65pF. The actual analog models used in the final model will be generated later in this example.

* The Pass-Through block Rx BCI Read is a block used to support this back-channel
implementation. The operation of this block will be described later in this example.

* The VGA block is set up with a Gain of 1 and the Mode set to on. Specific VGA presets will be
added later in this example after the model is exported to Simulink.

* The DFECDR block is set up for four DFE taps by including four Initial tap weights set to 0. The
Minimum tap value issetto [-0.2 -0.075 -0.06 -0.045] YV, and the Maximum tap value
issetto [0.05 0.075 0.06 0.045] V. The DFE has been configured to use 2x tap weights in
order to be consistent with the JEDEC DFE tap definition.

* The Pass-Through block Rx BCI Write is a block used to support this back-channel
implementation. The operation of this block will be described later in this example.

Export SerDes System to Simulink

Click on the Export button to export the configuration to Simulink for further customization and
generation of the AMI model executables.

DDRS5 Tx/Rx IBIS-AMI Model Setup in Simulink

This part of the example takes the SerDes system exported by the SerDes Designer app and
customizes it as required for DDR5 back-channel operation in Simulink.

7-79

7 Industry Standard IBIS-AMI Models

7-80

Review Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel
and Rx blocks. All the settings from the SerDes Designer app are transferred to the Simulink model.
Save the model and review each block setup.

* Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters dialog box.
Expand the IBIS-AMI parameters and deselect the Mode parameter, effectively hard-coding the
current value of Mode in the final AMI model to Fixed.

* Inside the Rx subsystem, double click the VGA block to open the VGA Block Parameters dialog
box. The Mode and Gain settings are carried over from the SerDes Designer app.

* Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block Parameters
dialog box. The Initial tap weights, Minimum DFE tap value, and Maximum tap value RMS
settings are carried over from the SerDes Designer app. The Adaptive gain and Adaptive step
size are set to 3e-06 and le-06, respectively, which are reasonable values based on DDR5
SDRAM expectations. Expand the IBIS-AMI parameters and deselect Phase offset and
Reference offset parameters, effectively hard-coding these parameters to their current values.

Update Transmitter (Tx) AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS-AMI Manager dialog box. The reserved parameters are
listed first followed by the model-specific parameters adhering to the format of a typical AMI file.

* Set the pre-emphasis tap: Edit TapWeights -1 and set Format to Range, Typ to 0, Min to -0. 2,
and Max to 0.2.

* Set the main tap: Edit TapWeights 0 and set Format to Range, Typ to 1, Min to 0.6, and Max to
1.

* Set the post-emphasis tap: Edit TapWeights 1 and set Format to Range, Typ to 0, Min to -0.2,
and Max to 0. 2.

Create new Tx back-channel AMI parameters

To support back-channel operation, additional control parameters are needed. In the AMI-Tx tab in
the SerDes IBIS-AMI Manager dialog, highlight Tx_BCI and add the following 6 new parameters:

+ FFE_Tapml: This parameter creates a Data Store that is used to pass the FFE pre tap value
between Tx blocks during training. Click the Add Parameter... button. Set Parameter Name to
FFE_Tapml, Current Value to 0, Usage to InQut, Type to Float, and Format to Value. Set the
Description as: Tx FFE Tap -1 for back-channel training. Save the changes and note
that this automatically creates Data Stores in the Tx_BCI PassThrough block.

» FFE_TapO: This parameter creates a Data Store that is used to pass the FFE main tap value
between Tx blocks during training. Click the Add Parameter... button. Set Parameter Name to
FFE_Tap0O, Current Value to 0, Usage to InQut, Type to Float, and Format to Value. Set the
Description as: Tx FFE Tap 0 for back-channel training. Save the changes.

* FFE _Tapl: This parameter creates a Data Store that is used to pass the FFE post tap value
between Tx blocks during training. Click the Add Parameter... button. Set Parameter Name to
FFE Tapl, Current Value to 0, Usage to InQut, Type to Float, and Format to Value. Set the
Description as: Tx FFE Tap 1 for back-channel training. Save the changes.

* BCI_Protocol_ST: This parameter is only used to generate a parameter named "BCI Protocol ST"
in the .ami file for partial compliance to the IBIS-AMI specification. This parameter is not used by
this model. Click the Add Parameter... button. Set Parameter Name to BCI Protocol ST,
Current Value to "DDRx _Write", Usage to Info, Type to String, and Format to Value. Set

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

the Description as: This model supports the DDRx Write Example back-channel
protocol. NOTE: This model does not currently support the reserved
parameter BCI Protocol as an input to the model. Save the changes.

BCIL_ID_ST: This parameter is only used to generate a parameter named "BCI ID ST" in the .ami
file for partial compliance to the IBIS-AMI specification. This parameter is not used by this model.
Click the Add Parameter... button. Set Parameter Name to BCI_ID ST, Current Value to
"bci comm", Usage to Info, Type to String, and Format to Value. Set the Description as:
This model creates files with names beginning with 'bci comm' for back-
channel communication. NOTE: This model does not currently support the AMI
reserved parameter BCI ID as an input to the model. Save the changes.

BCI_State_ST: This parameter creates a Data Store that is used to communicate the status of
back-channel training: 1=0ff, 2=Training, 3=Converged, 4=Failed, 5=Error. Click the Add
Parameter... button. Set Parameter Name to BCI_State ST, Usage to InOut, Type to
Integer, and Format to List. Set the Description as: Back channel training status.
NOTE: This model does not currently support the AMI reserved parameter

BCI State as an input to the model. Set the Default to 2, List valuesto [1 2 3 4 5],
and List_Tip values to ["Off" "Training" "Converged" "Failed" "Error"], then set
the Current Value to "Training". Save the changes.

Update Receiver (Rx) AMI Parameters

On the AMI-Rx tab in the SerDes IBIS-AMI Manager dialog box, the reserved parameters are listed
first followed by the model-specific parameters adhering to the format of a typical AMI file.

Set the VGA gain: Edit Gain. Set Description as: Rx Amplifier Gain. Make sure Format is set
to List and set Default to 1. Set List values as [0.5 0.631 0.794 1 1.259 1.585 2] and
List_Tip valuesas ["-6 dB" "-4 dB" "-2 dB" "0 dB" "2 dB" "4 dB" "6 dB"], then set
the Current Value to 0dB. Save the changes.

Set the first DFE tap weight: Edit TapWeights 1. Make sure Format is set to Range and set Typ
=0, Min = -0.2, and Max = 0.05. Save the changes.

Set the second DFE tap weight: Edit TapWeights 2. Make sure Format is set to Range and set
Typ = 0, Min = -0.075, and Max = 0.075. Save the changes.

Set the third DFE tap weight: Edit TapWeights 3. Make sure Format is set to Range and set Typ
=0, Min = -0.06, and Max = 0.06. Save the changes.

Set the fourth DFE tap weight: Edit TapWeights 4. Make sure Format is set to Range and set
Typ = 0, Min = -0.045, and Max = 0.045. Save the changes.

Create new Rx back-channel AMI parameters

To support back-channel operation, additional control parameters are needed. In the AMI-Rx tab in
the SerDes IBIS-AMI Manager dialog, highlight Rx_ BCI_Write and add the following new
parameters (Note: Rx_ BCI_Read does not require any additional parameters):

sampleVoltage: This parameter creates a Data Store that will be used to pass the CDR sample
voltage to the other Rx blocks during training. Click the Add Parameter... button. Set Parameter
Name to sampleVoltage, Current Value to 0, Usage to InOut, Type to Float, and Format to
Value. Set the Description as: Sample Voltage for back-channel training. Save the
change and note that this automatically creates Data Stores in the Rx BCI Write PassThrough
block.

BCI_Protocol_ST: This parameter only generates a parameter named "BCI Protocol ST" in
the .ami file for partial compliance to the IBIS-AMI specification. This parameter is not used by

7-81

7 Industry Standard IBIS-AMI Models

7-82

this model. Click the Add Parameter... button. Set Parameter Name to BCI Protocol ST,
Current Value to "DDRx Write", Usage to Info, Type to String, and Format to Value. Set
the Description as: This model supports the DDRx Write Example back-channel
protocol. NOTE: This model does not currently support the AMI reserved
parameter BCI Protocol as an input to the model. Save the changes.

* BCI_ID _ST: This parameter only generates a parameter named "BCI ID ST" in the .ami file for
partial compliance to the IBIS-AMI specification. This parameter is not used by this model. Click
the Add Parameter... button. Set Parameter Name to BCI _ID ST, Current Value to
"bci comm", Usage to Info, Type to String, and Format to Value. Set the Description as:
This model creates files with names beginning with 'bci comm' for back-
channel communication. NOTE: This model does not currently support the
reserved parameter BCI ID as an input to the model. Save the changes.

+ BCI_State_ST: This parameter creates a Data Store that is used to communicate the status of
back-channel training: 1=0ff, 2=Training, 3=Converged, 4=Failed, 5=Error. Click the Add
Parameter... button. Set Parameter Name to BCI_State ST, Usage to InOut, Type to
Integer, and Format to List. Set the Description as: Back channel training status.
NOTE: This model does not currently support the AMI reserved parameter
BCI State as an input to the model. Set the Default to 2, List values to [1 2 3 4 5],
and List_Tip values to ["Off" "Training" "Converged" "Failed" "Error"], then set
the Current Value to "Training". Save the changes.

* BCI_Message_Interval_UI_ST: This parameter only generates a parameter named
"BCI Message Interval UI" in the .ami file for partial compliance to the IBIS-AMI specification.
This parameter is not used by this model. Click the Add Parameter... button. Set Parameter
Name to BCI Message Interval UI ST, Current Value to 64, Usage to Info, Type to
Integer, and Format to Value. Set the Description as: Thie BCI model requires 1024
Samples Per Bit for proper operation. Save the changes.

* BCI_Training UI_ST: This parameter only generates a parameter named "BCI Training U STI"
in the .ami file for partial compliance to the IBIS-AMI specification. This parameter is not used by
this model. Click the Add Parameter... button. Set Parameter Name to BCI_Training UI ST,
Current Value to 100000, Usage to Info, Type to Integer, and Format to Value. Set the
Description as: BCI training may require 100,000 UI to complete. NOTE: This
model does not currently support the AMI reserved parameter BCI Training UI
as an input to the model. Save the changes.

Run Refresh Init

To propagate all the new AMI parameters, run Refresh Init on both the Tx and Rx blocks.

* Double click the Init subsystem inside the Tx block and click the Refresh Init button.
* Double click the Init subsystem inside the Rx block and click the Refresh Init button.

Run the Model

Run the model to simulate the SerDes system and verify that the current setup compiles and runs
with no errors or warnings. Two plots are generated. The first is a live time-domain (GetWave) eye
diagram that is updated as the model is running. The second plot contains four views of the statistical
(Init) results, like the plots available in the SerDes Designer App plus two views from the Time
Domain (GetWave) results.

Note: You can ignore any warnings for the unconnected blocks. These are due to the automatically
generated data store blocks that will be addressed later.

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

Supplied files

Three sets of external files are required to support back-channel training. The generation of these
files is beyond the scope of this example, so they are included in this example. Download the
following 9 files to the model directory (location of the Simulink .slx file) before running the complete
SerDes system or generating AMI model executables.

Write to back-channel communication files

These three files are used to write the current state of the back-channel training parameters and eye
metric(s) to an external file for communication between the Tx and Rx AMI models.

* MATLAB function file: writeBClIfile.m
* C++ files required for codegen: writeamidata.cpp and writeamidata.h

Read from back-channel communication files

These three files are used to read the current state of the back-channel training parameters and eye
metric(s) from an external file for communication between the Tx and Rx AMI models.

* MATLAB function file: readBClIfile.m

* C++ files required for codegen: readamidata.cpp and readamidata.h

Write to back-channel log files

These three files are used to write current state of the back-channel training parameters and eye
metric(s) after each training step to a log file for debug.

* MATLAB function file: writeBCIhistory.m

* C++ files required for codegen: writebcihist.cpp and writebcihist.h

Modify Tx FFE to enable external control of Tap values

To control the Tx FFE tap weights from the Tx BCI block when back-channel training is enabled,
replace the FFEParameter.TapWeights Constant block with a DataStoreRead block. This datastore
allows the FFE tap values to change during the simulation and to be passed in and out of each of the
datapath blocks.

Inside the Tx subsystem, click on the FFE block and type Ctrl-U to look under the mask of the FFE
block.

Delete the FFETapWeights Constant block.

Add a DataStoreRead block labeled BCIFFETapWeightsIn.

Double-click on the DataStoreRead block and set the Data store name to: Tx_BCISignal.

On the Element Selection tab, expand the signal Tx BCISignal and highlight FFE Tapml,
FFE Tap0@ and FFE Tapl.

Press the Select>> button to select these 3 elements.

D W N R

6 Save the changes.

Add a Mux block and set the number of inputs to 3 to multiplex these three parameters into a vector
for the FFE block.

Connect the output of the Mux block to the TapWeights input on the FFE.

7-83

7 Industry Standard IBIS-AMI Models

D~

The final FFE block should look like the following:

b D1
FFEParameter.Mode ’—» Mode FFE Out —

D1

Tx_BClSignal.FFE_Tapm1

Wi
D1 TapWeights

D1

Tx_BClSignal.FFE_Tap0
Tx BCISignal.FFE Tap1

YyYYyY°9%
(4]
[}
“y

FFE

7-84

BCIFFETapWeightsin

Type Ctrl-D to compile the model and check for errors. You can ignore any warnings for the
unconnected blocks. These are due to the automatically generated data store blocks that will be
addressed later

Modify the DFECDR to output eye Sample Voltage

To determine the quality of a given set of equalization values during back-channel training, the
voltage that is sampled by the CDR at the center of the eye for each symbol will be used. This value is
captured by a DataStoreWrite block so that its value is available to the other BCI control blocks.

Inside the Rx subsystem, click on the DFECDR block and type Ctrl-U to look under the mask of the
Rx DFECDR block.

Open the BusSelector object

1 Highlight voltageSample from the list of Elements in the bus.
2 Hit Select>> to move it to the list of Selected elements.
3 Save the changes.

Add a DataStoreWrite block labeled: CDR sample Voltage

1 Double click the DataStoreWrite block and set the Data store name to: Rx BCI WriteSignal on
the Parameters tab.

2 On the Flement Assignment tab, expand the signal Rx BCI WriteSignal and highlight
sampleVoltage.

3 Press the Select>> button to select this element.
Save the changes.

Connect the voltageSample output of the BusSelector to the input of the new DataStoreWrite block.
This portion of the DFECDR block should look like the following:

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

Interior 14 [hresholds » PAM4 UpperThreshold
<FAMAThreshold> -

JoltageSample> PAM4_UpperThreshold

0 pF———» PAM4_CenterThreshold

PAM4 CenterThreshold

— -1 FAaM4 | owerThreshold

PAM4 LowerThreshold

—— Rx_BCl_WriteSignal.sampleVoltage

CDR sample Voltage

Type Ctrl-D to compile the model and check for errors. You can ignore any warnings for the
unconnected blocks. These are due to the automatically generated data store blocks that will be
addressed later

Modify the DFECDR to override Mode when training is enabled

During back-channel training, both the FFE and DFE Modes need to be set to "Fixed". The FFE Mode
has been hard-coded to "Fixed". A simple MATLAB function is used to allow you to set the DFE Mode
when training is not enabled.

Inside the Rx subsystem, click on the DFECDR block and type Ctrl-U to look under the mask of the
Rx DFECDR block.

Delete the connection between the DFECDRMode block and the DFECDR.

Add a new MATLAB function block and set the label to DFEModeSelect. This function block reads
the values of BCI State ST and DFE.Mode and forces the DFE Mode to 1 (Fixed) when training is
enabled or completed. Copy/Paste the following code into the DFEModeSelect MATLAB function
block, replacing the default contents.

function Mode = DFEModeSelect(DFEModeIn, BCI State In)

if BCI State In == % Training is Off

Mode = DFEModeln;
else

Mode = 1; % Force DFE Mode to Fixed for all other Training states
end

Add a DataStoreRead block labeled Rx BCI Write BCI State In, so the value of BCI State ST
can be fed into the MATLAB function block.

1 Double click the DataStoreRead block and set the Data store name to: Rx BCI WriteSignal.

2 On the Flement Selection tab, expand the signal Rx BCI WriteSignal and highlight
BCI_State_ST.

7-85

7 Industry Standard IBIS-AMI Models

3 Press the Select>> button to select this element.
4 Save the changes.

Wire up these new blocks as shown. The final DFECDR block should look like the following:

[}
Ance ——ps Mode apWeights

Rx_BCI WriteSigral BCI_Stale I

=y gt . o ——
ot Tapihiaights DFECDR Phase DFECDRSgnal Phase
k.

DFECDRPhase

Rx_BCI_Writs BTl Stabe |n

#{ Reference(disat Cliahha

¥ Phas=0ffsat nberiar PN UpperThres

PAME_UpperThreshald
DFECDR * -

Pl _CenberThee:

PAME LowerThn

b{ Rx_BCI WriteSignal sampleioltage

COR sample Voltage

Type Ctrl-D to compile the model and check for errors. You can ignore any warnings for the
unconnected blocks. These are due to the automatically generated data store blocks that will be
addressed later

Set up the Tx Init Custom Code

The Tx Initialize function is used to set up the Tx AMI model for running back-channel training during
GetWave analysis. This creates the back-channel communication and log files, sets up the various
parameters and overrides any user defined FFE tap values.

Inside the Tx subsystem, double-click on the Init block, then click on Show Init to open the Initialize
Function in MATLAB.

The Initialize Function is an automatically generated function which provides the impulse response
processing of the SerDes system block (IBIS AMI-Init). The %% BEGIN: and % END: lines denote the
section where custom user code can be entered. Data in this section is not over-written when Refresh
Init is run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)

Tx BCIBCI State ST = Tx BCIParameter.BCI State ST; % User added AMI parameter from SerDes IBIS-Al
Tx BCIFFE Tap0 = Tx BCIParameter.FFE Tap0; % User added AMI parameter from SerDes IBIS-AMI Manag
Tx BCIFFE Tapl = Tx BCIParameter.FFE Tapl; % User added AMI parameter from SerDes IBIS-AMI Manag
Tx BCIFFE Tapml = Tx BCIParameter.FFE Tapml; % User added AMI parameter from SerDes IBIS-AMI Man:

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

Use this custom user code area to initialize the back-channel parameters, write the first entry in the
back-channel communication file "BCI_comm.csv" and create the back-channel log file

"BCI comm log.csv". To add the custom back-channel control code, scroll down to the custom user
code area and Copy/Paste the following code:

7-86

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

Tx BCIBCI State ST = Tx BCIParameter.BCI State ST; % User added AMI parameter from SerDes IBIS-AI
Tx BCIFFE Tap0 = Tx BCIParameter.FFE Tap0O; % User added AMI parameter from SerDes IBIS-AMI Manag
Tx BCIFFE Tapl = Tx BCIParameter.FFE Tapl; % User added AMI parameter from SerDes IBIS-AMI Manag
Tx BCIFFE Tapml = Tx BCIParameter.FFE Tapml; % User added AMI parameter from SerDes IBIS-AMI Man:

%% Set up for GetWave back-channel operation
if Tx BCIBCI State ST == 2 % Training enabled
bciWrFile = 'BCI comm.csv'; %% Tx/Rx back-channel communication file
Protocol = ['DDR5' 01]; Null terminate string to keep fprintf happy in C++
State = ['Training' 0]; Null terminate string to keep fprintf happy in C++
Sequence = 1; Initialize sequence counter
EyeHeight = 0.0; Initialize training metric
% Publish Tx capabilities
numFFEtaps = 3;
FFEtaps = [0.0, 1.0, 0.0];
FFEInit.TapWeights = [0.0, 1.0, 0.0];
% Initialize Rx capabilities (actual values set by Rx)
numDFEtaps = 1;
DFEtaps = 0.0000;

o d° o of of
0° o° o° o°

% Create new file for back-channel communication
writeBCIfile(bciWrFile, 'w', Protocol, numDFEtaps, numFFEtaps, DFEtaps, FFEtaps, Sequence, S

% Create new BCI ID log.csv file (for back-channel history)
logFileName = 'BCI comm log.csv';
writeBCIhistory(logFileName, 'Tx', 'Init', 0, Tx BCIBCI State ST, numDFEtaps, numFFEtaps, DFI

end

To test that the new user code is working correctly, save and run the model, then verify that the new
back-channel communication (BCI comm.csv) and log (BCI comm log.csv) files have been created in
the model directory and that the values in the files match the values set above.

Set up the Rx Init Custom Code

The Rx Initialize function is used to set up the Rx AMI model for running back-channel training
during GetWave analysis. This reads in the back-channel communication file and then updates the file
with the Rx configuration information (number of DFE taps and DFE tap values). It also updates the
log file.

Inside the Rx subsystem double click on the Init block, then click on Show Init to open the Initialize
Function in MATLAB.

The Initialize Function is an automatically generated function which provides the impulse response
processing of the SerDes system block (IBIS AMI-Init). The %% BEGIN: and % END: lines denote the
section where custom user code can be entered. Data in this section is not over-written when Refresh
Init is run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
Rx BCI WritesampleVoltage = Rx BCI WriteParameter.sampleVoltage; % User added AMI parameter from
Rx BCI WriteBCI State ST = Rx BCI WriteParameter.BCI State ST; % User added AMI parameter from S

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

Use this custom user code area to read the configuration from the Tx, initialize the additional back-
channel parameters required by the Rx, write the next entry in the back-channel communication file

7-87

7 Industry Standard IBIS-AMI Models

"BCI_comm.csv", and append to the back-channel log file "BCI comm log.csv". To add the custom
back-channel control code, scroll down the custom user code area and Copy/Paste the following code:

Rx BCI WritesampleVoltage = Rx BCI WriteParameter.sampleVoltage; % User added AMI parameter from
Rx BCI WriteBCI State ST = Rx BCI WriteParameter.BCI State ST; % User added AMI parameter from S

%% Set up for GetWave back-channel operation

if Rx BCI WriteBCI State ST == 2 % Training enabled
%% Read from back-channel communication file to get setup from Tx
bciRdFile = 'BCI comm.csv';

[Protocol, ~, numFFEtaps, ~, FFEtaps, Sequence, State, EyeHeight] = readBCIfile(bciRdFile);
%% Write Rx setup to back-channel communication file.

bciWrFile = 'BCI comm.csv';

Sequence = Sequence + 1; %% Initialize sequence counter

% Publish Rx capabilities
numDFEtaps = 4;
DFEtaps = [0.0000, 0.0000, 0.0000, 0.0000];

writeBCIfile(bciWrFile, 'w', Protocol, numDFEtaps, numFFEtaps, DFEtaps, FFEtaps, Sequence, S

% Write to log file
logFileName = 'BCI comm log.csv';
writeBCIhistory(logFileName, 'Rx', 'Init', 0, Rx BCI WriteBCI State ST, numDFEtaps, numFFEta

% Force DFE Mode to Fixed when training is enabled.
DFECDRINnit.Mode = 1;

end

To test that the new user code is working correctly, save and run the model, then verify that the back-
channel communication (BCI comm.csv) and log (BCI comm log.csv) files have been created and that
the values in the files match the values set above. In the BCI comm log.csv file you should see that
the first RX call has been added to the log file (Sequence #2).

Set up the Tx Tx_BCI pass-through block

The Tx_BCI block is used to control the entire back-channel training process. The first time through it
initializes all the Tx and Rx parameters that will be optimized during training. After every back-
channel training cycle this block will read the current eye metric supplied by the Rx, store this value,
then update the Tx and Rx parameters for the next pass. When training is complete this block will
signal completion of training, set all Tx and Rx parameters to their optimal values and then return the
models to regular operation.

The first step is to set up the Tx BCI block for back-channel operation. The MATLAB function block
that controls the operation of the Tx BCI block is written later in this example.

Look under the mask in the Tx BCI block. You should see 8 automatically generated DataStore read/
write blocks.

Delete the Pass-Through system object since it is not used. Be sure to connect the Inport to the
Outport.

Add a Mux block and set the number of inputs to 3. This will be used to multiplex the three
tapWeightsIn DataStoreRead signals into a single vector.

7-88

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

Add a Demux block and set the number of outputs to 3. This will be used to demultiplex the
tapWeightsOut vector into three separate DataStoreWrite signals.

Add a new MATLAB function block and set the label to Counter. This MATLAB function returns a
count of the total number of samples processed by the model and the resulting number of UIL. Open
this new MATLAB function block then Copy/Paste the following code, replacing the default contents.

function [sampCount, uiCount] = counter(SymbolTime, Samplelnterval)

% Calculate Samples Per Bit
sampBit = round(SymbolTime/SamplelInterval);

% Set up persistent variables
persistent x y
if isempty(x)

x = int32(1);

y = int32(1);
else

X =X+ 1;

end

% Start counting by UI

if mod(x,sampBit) ==
y=y+1;

end

% Output results
sampCount = Xx;
uiCount =vy;

The values for two of the inputs to this function, SymbolTime and SamplelInterval, are inherited
from the Model Workspace and therefore do not need to show up as nodes on the MATLAB function
block. To remove these nodes from the MATLAB function block:

Save the MATLAB function.

In the MATLAB function signature highlight the parameter SymbolTime.

Right-click on the parameter and select Data Scope for "SymbolTime".

Change the Data Scope from Signal to Parameter.

Repeat this process for SampleInterval.

O U1 A W N M

When you save the MATLAB function you should see that these two input parameters have been
removed from the function block on the Simulink canvas.

The Data Type for the outputs of this function, sampCount and uiCount, are set to Inherit by
default. Since this function block is creating the values for these two parameters their Data Type
needs to be explicitly defined instead of determined based on heuristics. To explicitly define the Data
Types for these two parameters:

1 Open the Simulink Model Explorer and navigate to Tx->Tx BCI->Counter.

2 Highlight the parameter sampCount.

3 Update the Type from Inherit to int32 and click Apply.

4 Repeat this process for uiCount.

Add another new MATLAB function block and set the label to txBackChannel. This MATLAB
function block is used to control the back-channel training process. The contents of this function will

7-89

7 Industry Standard IBIS-AMI Models

be covered later in this example. However, to complete the Tx BCI block connections you must
display all the correct nodes. To enable this:

1 Double click the txBackChannel MATLAB function block to open it in the MATLAB editor.
2 Delete all the default contents.

3 Insert the following function signature:

function [tapWeightsOut, BCIStateOut] = txBCtraining(tapWeightsIn, BCIStateIn, sampleCounter, uil

The values for two of the inputs to this function, SymbolTime and Samplelnterval, are inherited
from the Model Workspace and therefore do not need to show up as nodes on the MATLAB function
block. To remove these nodes from the MATLAB function block:

Save the MATLAB function.

In the MATLAB function signature highlight the parameter SymbolTime.

Right-click on the parameter and select Data Scope for "SymbolTime".

Change the Data Scope from Signal to Parameter.

Repeat this process for SampleInterval.

o A W N MK

When you save the MATLAB function you should see that these two input parameters have been
removed from the function block on the Simulink canvas.

Connect everything together as shown below:

In Out

tapWeightsl
. apWeightsin 301
tapWeightsOut .
BClStatein
D1

| Tx_BCISignal.FFE_Tapm1

FFE_Tapm1 read Tx_BCISignal FFE_Tapm1 I

}E”_I—’

= D1
| Tx_BCISignal.FFE_Tap0 I—b
o [

FFE_Tapm1 write

FFE_Tap0 read Tx_BCISignal.FFE_Tap0 |

FFE_TapQ write

l Tx_BCISignal.FFE_Tap1

sampleCounter txBCtraining

FFE_Tap1 read Tx_BClSigna.FFE_Tap1 |

D
| Tx_BCISignal.BCI_State_ST |1—

BCI_State ST read

BCIStateOut FFE_Tap1 write

uiCounter

txBackChannel

e

Tx_BCISignal.BCI_State_ST |

BCI_State_ST write

sampCount

counter

uiCount

Counter

Set up the Rx Rx_BCI_Read block

The Rx BCI Read block is used to read the Rx parameters values requested by the Tx BCI block and
set those values for the next back-channel training cycle. If the Tx BCI block signals that training is
complete, this block sets the final values to be used for the remainder of the simulation.

The first step is to set up the Rx BCI Read block for back-channel operation. The MATLAB function
block that controls the operation of the Rx BCI Read block is written later in the example.

Look under the mask in the Rx BCI Read block.

7-90

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

Delete the Pass-Through system object since it will not be used. Be sure to connect the Inport to the
Outport.

Add a DataStoreRead block labeled DFECDRTapWeightsIn

Double click the DataStoreRead block and set the Data store name to: DFECDRSignal.

On the Element Selection tab, expand the signal DFECDRSignal and highlight TapWeights
[1,4].

3 Press the Select>> button to select this element.
Save the changes.

Add a DataStoreRead block labeled RxBCIStateln

Double click the DataStoreRead block and set the Data store name to: Rx_ BCI_WriteSignal.

On the Element Selection tab, expand the signal Rx BCI WriteSignal and highlight
BCI State ST.

3 Press the Select>> button to select this element.
Save the changes.

Add a DataStoreWrite block labeled RxBCIStateOut

Double click the DataStoreWrite block and set the Data store name to: Rx_ BCI WriteSignal.

On the Element Assignment tab, expand the signal Rx BCI WriteSignal and highlight
BCI State ST.

3 Press the Select>> button to select this element.
Save the changes.

Add a DataStoreWrite block labeled DFECDRTapWeightsOut

Double-click on the DataStoreWrite block and set the Data store name to: DFECDRSignal.

On the Element Assignment tab, expand the signal DFECDRSignal and highlight TapWeights
[1,4].

3 Press the Select>> button to select this element.
Save the changes.

Copy the Counter MATLAB function block from the Tx Tx BCI block into this block.

Add a new MATLAB function block and set the label to rxBackChannelRead. This MATLAB
function block is used to control the back-channel training process. The contents of this function will
be covered later in this example. However, to complete the Rx BCI Read block connections you must
display all the correct nodes. To enable this:

1 Double click the rxBackChannelRead MATLAB function block to open in the MATLAB editor.

2 Delete all the default contents.

3 Insert the following function signature:
function [BCIStateOut, tapWeightsOut] = rxBCtrainingRead(tapWeightsIn, BCIStateIn, sampleCounter

The values for two of the inputs to this function, SymbolTime and Samplelnterval, are inherited
from the Model Workspace and therefore do not need to show up as nodes on the MATLAB function
block. To remove these nodes from the MATLAB function block:

7-91

7 Industry Standard IBIS-AMI Models

Save the MATLAB function.

In the MATLAB function signature highlight the parameter SymbolTime.
Right-click on the parameter and select Data Scope for "SymbolTime".
Change the Data Scope from Signal to Parameter.

Repeat this process for SampleInterval.

O U A W N R

When you save the MATLAB function you should see that these two input parameters have been
removed from the function block on the Simulink canvas.

Connect everything together as shown below:

o1
(
B »()
In Ot
[1x4] D1
DFECDRSignal. TapWeights(:,:} o
[1x4]
" 01 —— %
DFECDRTapWeightsin BCISEe0ut f———————— Rx_BCI_WriteSignal. BC1_State ST
o1 RxBCIStateOut
Rx_BCI_WriteSignal.BC|_State_ST BCIStateln iz .
RxBCIStateln ‘

mECHainingRead

counter ot D1 tapWeightsOut DFECDRSignal. TapWeights(:,:)

ount —I— R
C .T ATy o "
Counter B LiCounter DFECDRTapWeightsOu!

rxBackChannelRead

Set up the Rx Rx_BCI_Write block

The Rx BCI Write block is used at the end of each back-channel training cycle to calculate the
current eye metrics and report those metrics back to the Tx_BCI block for analysis.

The first step is to set up the Rx_ BCI Write block for back-channel operation. The MATLAB function
block that controls the operation of the Rx BCI Write block is written later in the example.

Look under the mask in the Rx BCI Write block. You should 4 automatically generated DataStore
read/write blocks.

Delete the Pass-Through system object since it is not used. Be sure to connect the Inport to the
Outport.

Delete the DataStoreWrite block labeled sampleVoltage write. It will not be used.

Add a DataStoreRead block labeled DFECDRTapWeightsIn.

1 Double-click on the DataStoreRead block and set the Data store name to DFECDRSignal.

2 On the Element Selection tab, expand the signal DFECDRSignal and highlight TapWeights
[1,4].

3 Press the Select>> button to select this element.
Save the changes.

Copy the Counter MATLAB function block from the Tx Tx BCI block into this block.

7-92

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

Add a new MATLAB function block and set the label to rxBackChannelWrite. This MATLAB
function block is used to control the back-channel training process. The contents of this function will
be covered later in this example. However, to complete the Rx BCI Write block connections you must
display all the correct nodes. To enable this:

1 Double click the rxBackChannelWrite MATLAB function block to open in the MATLAB editor.

2 Delete all the default contents.

3 Insert the following function signature:

function BCIStateOut = rxBCtrainingWrite(sampleV, tapWeightsIn, BCIStateIn, sampleCounter, uiCoul

The values for two of the inputs to this function, SymbolTime and SamplelInterval, are inherited
from the Model Workspace and therefore do not need to show up as nodes on the MATLAB function
block. To remove these nodes from the MATLAB function block:

Save the MATLAB function.

In the MATLAB function signature highlight the parameter SymbolTime.

Right-click on the parameter and select Data Scope for "SymbolTime".

Change the Data Scope from Signal to Parameter.

Repeat this process for SampleInterval.

o U1 A W N R

When you save the MATLAB function you should see that these two input parameters have been
removed from the function block on the Simulink canvas.

Connect everything together as shown below:

In Qut

D1
‘ Rx_BCI_WriteSignal.sampleVoltage l—bsamplc—‘v’

sampleVoltage read

n . [1x4] D1
| DFECDRSignal. TapWeights(:,:) }—b tapWeightsin
[1xd]

DFECDRTapWeightsin

D1 D1
‘ Rx_BCI_WriteSignal. BC|_State_ST }—» BCIStateln 4 BCIStat=Out 75{ Rx_BCI_WriteSignal BCI_State_ST

rxBClrainingWrite .
BC|_State_ST read BCI_State_ST write

D1

sampCount sampleCounter

counter B

uiCount
Counter 1 uiCounter

r«BackChannelWrite

Edit the txBCtraining MATLAB function block

The Tx_BCI block is used to control the entire back-channel training process. The first time through it
initializes all the Tx and Rx parameters that will be optimized during training. After every back-
channel training cycle, this block reads the current eye metric supplied by the Rx, stores this value,
then updates the Tx and Rx parameters for the next pass. When training is complete this block

7-93

7 Industry Standard IBIS-AMI Models

7-94

signals completion of training, sets all Tx and Rx parameters to their optimal values and then returns
the models to regular operation.

The Tx_BCI block was set up for back-channel operation earlier in this example. Now you will create
the MATLAB function block at the heart of the Tx BCI block. This MATLAB function block, which was
labeled txBackChannel, controls the entire back-channel training process. The steps involved in this
process are as follows:

1 Define the function signature

Initialize parameters and set persistent variables

Define the parameters to be swept and their ranges

On the first GetWave call, set up the initial starting parameter values for the Tx and the Rx

gua A W N

Every back-channel training cycle read the eye metrics calculated by the Rx and decide what to
do next. When training is complete signal the completion of training, output the optimal Tx and
Rx parameter values to be used during simulation and write these final values to the log file.

6 Set the proper training state and output the FFE parameters to be used
The following sections walks you through the code used in the txBackChannel MATLAB function
block. In the Tx block, click on the Tx BCI pass-through block and type Ctrl-U to push into the

Tx_BCI pass-through block set up earlier. Double-click on the txBackChannel MATLAB function
block, then Copy/Paste the code described in the following sections.

Define the function signature
The function signature for the txBCtraining block has 6 inputs and 2 outputs. The inputs are:

+ tapWeightsIn: The FFE tap weights array as defined in the FFE mask.

* BCIStatelIn: The back-channel state value from the TxBCIStateln Data Store.
* sampleCounter: Count of total number of samples.

* uiCounter: Count of total number of Ul.

* SymbolTime: The Ul (in seconds). This value is inherited from the Model Workspace and
therefore does not need to show up as a node on the MATLAB function block. To remove this node
from the MATLAB function block, the Data Scope was earlier set to "Parameter".

* Samplelnterval: Simulation step size (in seconds). This value is inherited from the Model
Workspace and therefore does not need to show up as a node on the MATLAB function block. To
remove this node from the MATLAB function block, the Data Scope was earlier set to "Parameter".

There are two outputs:

+ tapWeightsOut: The FFE tap weights array output to the BCIFFETapWeightsOut Data Store.
* BCIStateOut: The back-channel state value output to the TxBCIStateOut Data Store.

The function signature was added earlier when initially creating the MATLAB function block and so is
already present.

Initialize parameters and variables

This section sets up the three constants needed for calculating the size of the back-channel training
cycle:

* sampBit: The number of samples in each UL

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

* messagelnterval: The length (in UI) of each back-channel training cycle. This value is currently
set to ~2 PRBS7 iterations.

* BClIwait: The delay time (in UI) before starting back-channel training. This value is currently set
to ~4 PRBS?7 iterations.

In addition to the constant values, this section sets up the 11 persistent variables used by this
function. Persistent variables retain their values between each call to this MATLAB function. The 11
persistent variables are:

* Protocol: The protocol being used by this back-channel model.

* numDFEtaps: The number of DFE taps being included in this back-channel training algorithm.
* numFFEtaps: The number FFE taps being included in this back-channel training algorithm.

» DFEtaps: The current DFE tap values.

« FFEtaps: The current FFE tap values.

* Sequence: A integer counter used to log the sequence of training events.

* State: The current back-channel training state.

* EyeHeight: The current eye height (in Volts) being reported by the Rx.

» step: The current training sequence step being run.

* indx: An index variable for control loops.

* metric: An array used to store the incoming eye heights from each training step.

To initialize these parameters and variables, Copy/Paste the following code into the txBackChannel
MATLAB function block:

%% Setup

sampBit = round(SymbolTime/SampleInterval); %
messagelnterval = 256; %
BCIwait = 512; %

Calculate Samples Per Bit
Length (in UI) of back-channel training cycle it
Delay time (in UI) before starting training(~4 PI

o® o° o°

% Read BCI file to determine training values
Make variables available between time steps
persistent Protocol numDFEtaps numFFEtaps DFEtaps FFEtaps Sequence State EyeHeight step indx met

)
‘o
)

“©

% Initialize variable initial conditions
if isempty(Protocol)
Protocol = 'Defaults’;
end
if isempty(numDFEtaps)
numDFEtaps = 4;
end
if isempty(numFFEtaps)
numFFEtaps = 3;
end
if isempty(DFEtaps)
DFEtaps = [0.000,0.000,0.000,0.000];
end
if isempty(FFEtaps)
FFEtaps = [0.000,1.000,0.000];
end
if isempty(Sequence)
Sequence = 1;
end

7-95

7 Industry Standard IBIS-AMI Models

7-96

if isempty(State)
State = 'Testing';
end
if isempty(EyeHeight)
EyeHeight = 0.000;
end
if isempty(step)
step =
end
if isempty(indx)
indx = 1;
end
if isempty(metric)
metric = zeros(50,1);
end

Define swept parameters

The training algorithm implemented in this example sweeps the pre and post FFE tap values and all 4
of the DFE taps individually, then selects the optimal value for each tap. Eight parameters are used to
define the ranges for each of the taps and the step size to be used during training:

+ ffeTapStep: The step size to be used when sweeping the FFE taps. This value is negative since
the FFE tap values are always <= 0.

+ dfeTapStep: The step size to be used when sweeping the DFE taps.

* regFFEtapml: The min/max range of values to be used when sweeping the FFE pre-tap.

* regFFEtapl: The min/max range of values to be used when sweeping the FFE post-tap.

* regDFEtapl: The min/max range of values to be used when sweeping the first DFE tap.

* regDFEtap2: The min/max range of values to be used when sweeping the second DFE tap.

* regDFEtap3: The min/max range of values to be used when sweeping the third DFE tap.

* regDFEtap4: The min/max range of values to be used when sweeping the fourth DFE tap.

To define all the parameters to be swept during training, Copy/Paste the following code into the
txBackChannel MATLAB function block:

% Define parameter step sizes
ffeTapStep -0.050;
dfeTapStep 0.010;

% Map ranges to register values

regFFEtapml = (0.000:ffeTapStep:-0.300);
regFFEtapl = (0.000:ffeTapStep:-0.300);
regDFEtapl = (-0.200:dfeTapStep: 0.050);
regDFEtap2 = (-0.075:dfeTapStep: 0.075);
regDFEtap3 = (-0.060:dfeTapStep: 0.060);
regDFEtap4 = (-0.045:dfeTapStep: 0.045);

First GetWave call

When training is enabled, the very first call to this MATLAB function needs to read the back-channel
communication file written during Init to determine the full capabilities of the Tx and Rx models. This
section also sets up the initial values to be used for the first back-channel training cycle. Finally, all
these values are written to the back-channel communication log file.

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

To implement the first GetWave call, Copy/Paste the following code into the txBackChannel MATLAB
function block:

%% First Tx GetWave Call (Sequence=3)
if sampleCounter == 1 && BCIStateIn == 2 % Training enabled
% Read back-channel communication file to get current settings
bciRdFile = 'BCI comm.csv';
[~, numDFEtaps, numFFEtaps, ~, ~, Sequence, ~, EyeHeight] = readBCIfile(bciRdFile);

% Decide what to do first

% Tx Params

FFEtaps = [0.000,1.000,0.000];

% Rx Params

DFEtaps = [0.0000, 0.0000, 0.0000, 0.0000];

% Write back-channel communication file with first pass settings for Rx
bciWrFile = 'BCI comm.csv';
Protocol = ['DDR5' 01]; % Null terminate string to keep fprintf happy in C++
State = ['Training' 0]; % Null terminate string to keep fprintf happy in C++

Sequence = Sequence + 1;

writeBCIfile(bciWrFile, 'w', Protocol, numel(DFEtaps), numel(FFEtaps), DFEtaps, FFEtaps, Seq

[
o
[

o

% Write to log file

logFileName = 'BCI comm log.csv';

writeBCIhistory(logFileName, 'Tx', 'GetW', sampleCounter, BCIStateIn, numel(DFEtaps), numel(|
end

Back-channel training algorithm

When training is enabled, after waiting the number of Ul as defined by the constant BCIwait, the
back-channel training algorithm is called every training block as defined by the messagelInterval
constant. First the current metrics reported by the Rx are read, then those results are written to the
back-channel communication log file. The training algorithm uses the following steps:

1 Sweep all values of the FFE pre-tap and determine which value results in the largest eye
opening.

2 Sweep all values of the FFE post-tap and determine which value results in the largest eye
opening.

Sweep all values of DFE tap 1 and determine which value results in the largest eye opening.
Sweep all values of DFE tap 2 and determine which value results in the largest eye opening.
Sweep all values of DFE tap 3 and determine which value results in the largest eye opening.
Sweep all values of DFE tap 4 and determine which value results in the largest eye opening.

N o o1 AW

When training is complete, change the State to "Converged" and write the final values to the
back-channel communication log file.

To implement the back-channel training algorithm, Copy/Paste the following code into the
txBackChannel MATLAB function block:

%% Each subsequent BCI Block (Sequence=5,7,9,11...)

if uiCounter > BCIwait + 2 && mod(sampleCounter - 1, (messagelnterval * sampBit)) == 0 && BCISt
% Read setup used for previous 16 GetWaveblocks from back-channel communication file
bciRdFile = 'BCI comm.csv';
[~, ~, ~, ~, ~, Sequence, ~, EyeHeight] = readBCIfile(bciRdFile);

7-97

7 Industry Standard IBIS-AMI Models

% Write current results to log file
Sequence = Sequence + 1;

logFileName = 'BCI comm log.csv';
writeBCIhistory(logFileName, 'Tx', 'GetW', sampleCounter, BCIStateIn, numel(DFEtaps), numel(|
if indx ~= 1

% Store current metrics
metric(indx - 1) = EyeHeight;
end

% Decide what to do next
switch step
case 1 % Step 1: Determine best value for FFE tap -1
State = ['Training' 0]; %% Null terminate string to keep fprintf happy in C++
if indx <= length(regFFEtapml)
% Set values for next iteration

FFEtaps(1l) = regFFEtapml(indx);
FFEtaps(3) = 0.0;
FFEtaps(2) = 1 - abs(FFEtaps(1l)) - abs(FFEtaps(3));

indx = indx + 1;

elseif indx == length(regFFEtapml) + 1
% Set best metric
[~, jj] = max(metric);

FFEtaps(1l) = regFFEtapml(jj);
FFEtaps(3) = 0.0;
FFEtaps(2) = 1 - abs(FFEtaps(1l)) - abs(FFEtaps(3));

% Done. Set up for next step
metric = zeros(50,1);

step step + 1;

indx 1;

end
case 2 % Step 2: Determine best value for FFE tap 1

State = ['Training' 0];

if indx <= length(regFFEtapl)
% Set values for next iteration
%FFEtaps(l) = 0.0; %% Use value from step 1
FFEtaps(3) regFFEtapl(indx);
FFEtaps(2) 1 - abs(FFEtaps(1l)) - abs(FFEtaps(3));
indx = indx + 1;

elseif indx == length(regFFEtapl) + 1
% Set best metric
[~, jj] = max(metric);
FFEtaps(3) regFFEtapl(jj);
FFEtaps(2) 1 - abs(FFEtaps(1l)) - abs(FFEtaps(3));

% Done. Set up for next step
metric = zeros(50,1);
step = step + 1;
indx = 1;
end
case 3 % Step 3: Determine best value for DFE tap 1
State = ['Training' 0];
if indx <= length(regDFEtapl)
% Set values for next iteration
DFEtaps = [regDFEtapl(indx), 0.0000, 0.0000, 0.0000];
indx = indx + 1;
elseif indx == length(regDFEtapl) + 1
% Set best metric

7-98

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

max(metric);
[regDFEtapl(jj), 0.0000, 0.0000, 0.0000];

[~r JJ]
DFEtaps

% Done. Set up for next step
metric = zeros(50,1);
step = step + 1;
indx = 1;
end
case 4 % Step 4: Determine best value for DFE tap 2
State = ['Training' 0];
if indx <= length(regDFEtap2)
% Set values for next iteration
DFEtaps(2:4) = [regDFEtap2(indx), 0.0000, 0.0000];
indx = indx + 1;
elseif indx == length(regDFEtap2) + 1
% Set best metric
[~, jj] = max(metric);
DFEtaps(2:4) = [regDFEtap2(jj), 0.0000, 0.0000];

% Done. Set up for next step
metric = zeros(50,1);

step step + 1;

indx 1;

end
case 5 % Step 5: Determine best value for DFE tap 3

State = ['Training' 0];

if indx <= length(regDFEtap3)
% Set values for next iteration
DFEtaps(3:4) = [regDFEtap3(indx), 0.0000];
indx = indx + 1;

elseif indx == length(regDFEtap3) + 1
% Set best metric
[~, jj] = max(metric);
DFEtaps(3:4) = [regDFEtap3(jj), 0.0000];

% Done. Set up for next step
metric = zeros(50,1);
step = step + 1;
indx = 1;

end

case 6 % Step 6: Determine best value for DFE tap 4

State = ['Training' 0];

if indx <= length(regDFEtap4)
% Set values for next iteration
DFEtaps(4) = regDFEtap4(indx);
indx = indx + 1;

elseif indx == length(regDFEtap4) + 1
% Set best metric
[~, jj] = max(metric);
DFEtaps(4) = regDFEtap4(jj);

% Done. Set up for next step
metric = zeros(50,1);
step = step + 1;
indx = 1;
end
case 7 % Step 7: Training is complete
State = ['Converged' 0];

7-99

7 Industry Standard IBIS-AMI Models

7-100

% Write final entry in log file
logFileName = 'BCI comm log.csv';
Sequence = Sequence + 1;
writeBCIhistory(logFileName, 'Tx', 'GetW', sampleCounter, 3, numel(DFEtaps), numel(FI
otherwise
State = ['Error' 0];
end

% Write to back-channel communication file with next pass settings for Rx

bciWrFile = 'BCI comm.csv';

Protocol = ['DDR5' 01]; %% Null terminate string to keep fprintf happy in C++
writeBCIfile(bciWrFile, 'w', Protocol, numel(DFEtaps), numel(FFEtaps), DFEtaps, FFEtaps, Seq

end

Set training State and output parameter values

The last thing that needs to be done in by this MATLAB function is to update the State for the
BCI State ST Data Store and to update the FFE tap array values.

To set the training state and output values, Copy/Paste the following code into the txBackChannel
MATLAB function block:

%% Set back-channel state
if strcmpi(State,'0ff') || strcmpi(State,['0ff' 0])
BCIStateOut = 1;

elseif strcmpi(State,'Training') || strcmpi(State,['Training' 0])
BCIStateOut = 2;
elseif strcmpi(State, 'Converged') || strcmpi(State,['Converged' 0])

BCIStateQut = 3;

elseif strcmpi(State,'Failed') || strcmpi(State,['Failed' 01])
BCIStateQut = 4;

else %Error
BCIStateQut = 5;

end

%% Set output FFE values based on Training

if BCIStateOut == 2 || BCIStateOut == 3 % Training enabled/Converged
tapWeightsOut = FFEtaps(:);

else % Training Off/Failed/Error
tapWeightsOut = tapWeightsIn;

end

Save and close this MATLAB function block.
Edit the rxBCtrainingRead MATLAB function block

The Rx BCI Read block is used to read the Rx parameters values requested by the Tx BCI block and
set them for the next back-channel training cycle. If the Tx BCI block signals that the training is
complete, this block sets the final values to be used by the Rx for the remainder of the simulation.

The Rx BCI Read block was set up for back-channel operation earlier in this example. Now create the
MATLAB function block at the center of the Rx BCI Read block. This MATLAB function block, which
was labeled rxBCtrainingRead, sets the Rx DFE values to be used. The steps involved in this
process are as follows:

1 Define the function signature.

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

Initialize parameters and set persistent variables.

3 On the first GetWave call, and at the beginning of every back-channel training cycle, read the Rx
DFE tap values to be used as specified by the Tx back-channel training algorithm.

4 Set the proper training state and output the DFE parameters to be used.
The following sections walk you through the code used in the rxBCtrainingRead MATLAB function
block. In the Rx block, click on the Rx BCI Read pass-through block and type Ctrl-U to push into the

Rx BCI Read pass-through block set up earlier. Double click the rxBCtrainingRead MATLAB function
block, then Copy/Paste the code described in the following sections.

Define the function signature
The function signature for the rxBCtrainingRead block has 6 inputs and 2 outputs. The inputs are:

+ tapWeightsIn: The DFE tap weights array as defined in the DFECDRTapWeightsIn Data Store.
* BCIStatelIn: The back-channel state value from the RxBCIStateln Data Store.

* sampleCounter: Count of total number of samples.

* uiCounter: Count of total number of UL

* SymbolTime: The Ul (in seconds). This value is inherited from the Model Workspace and
therefore does not need to show up as a node on the MATLAB function block. To remove this node
from the MATLAB function block, the Data Scope has been set to "Parameter".

* Samplelnterval: Simulation step size (in seconds). This value is inherited from the Model
Workspace and therefore does not need to show up as a node on the MATLAB function block. To
remove this node from the MATLAB function block, the Data Scope has been set to "Parameter".

There are two outputs:

+ tapWeightsOut: The DFE tap weights array output to the DFECDRTapWeightsOut Data Store.
» BCIStateOut: The back-channel state value output to the RxBCIStateOut Data Store.

The function signature was entered earlier when initially creating the MATLAB function block and so
is already present.

Initialize parameters and variables

This section sets up the three constants needed for calculating the size of the back-channel training
cycle:
* sampBit: The number of samples in each UL

* messagelnterval: The length (in Ul) of each back-channel training cycle. This value is currently
set to ~2 PRBS7 iterations.

* BClwait: The delay time (in UI) before starting back-channel training. This value is currently set
to ~4 PRBS?7 iterations.

In addition to the constant values, this section sets up the 7 persistent variables used by this function.
Persistent variables retain their values between each call to this MATLAB function. The 7 persistent
variables are:

* Protocol: The protocol being used by this back-channel model.
* numDFEtaps: The number of DFE taps being included in this back-channel training algorithm.

7-101

7 Industry Standard IBIS-AMI Models

* numFFEtaps: The number FFE taps being included in this back-channel training algorithm.
* DFEtaps: The current DFE tap values.

» FFEtaps: The current FFE tap values.

* Sequence: A integer counter used to log the sequence of training events.

* State: The current back-channel training state.

To initialize the parameters and variables, Copy/Paste the following code into the rxBCtrainingRead
MATLAB function block:

%% Setup

sampBit = round(SymbolTime/SampleInterval); %
messageInterval = 256; %
BCIwait = 512; %

alculate Samples Per Bit

o® o o°

% Make variables available between time steps
persistent Protocol numDFEtaps numFFEtaps DFEtaps FFEtaps Sequence State;

% Initialize variable initial conditions

if isempty(Protocol)
Protocol = 'Defaults’;

end

if isempty(numDFEtaps)
numDFEtaps = 4;

end

if isempty(numFFEtaps)
numFFEtaps = 3;

end

if isempty(DFEtaps)
DFEtaps = tapWeightsIn;

end

if isempty(FFEtaps)
FFEtaps = [0,0,0];

end

if isempty(Sequence)
Sequence = 1;

end
if isempty(State)
if BCIStateln == % Off
State = ['Off' 0];
elseif BCIStateIn == 2 % Training
State = ['Training' 0];
elseif BCIStateIn == 3 % Converged
State = ['Converged' 0];
elseif BCIStateIn == 4 % Failed
State = ['Failed' 0];
else % Error
State = ['Error' 0];
end
end

Read DFE tap values to be used
When training is enabled, on the very first call to this MATLAB function and at the beginning of every

training block as defined by the messageInterval constant, the back-channel communication file is
read to determine the updated DFE tap values to be used for the next training cycle.

7-102

C
Length (in UI) of back-channel training cycle it
Delay time (in UI) before starting training(~4 PI

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

To set up the DFE tap values to be used, Copy/Paste the following code into the rxBCtrainingRead
MATLAB function block:

% First GetWave block of each BCI Block (Sequence=3,5,7,9,11,...)
Read back-channel communication file to get current settings
if (sampleCounter == 1 && BCIStateIn == 2) || ((uiCounter > BCIwait + 2 && mod(sampleCounter -
bciRdFile = 'BCI_comm.csv';
[Protocol, numDFEtaps, numFFEtaps, DFEtaps(1l,1:4), FFEtaps, Sequence, State, ~] = readBCIfil

[}
%
)

“©

end

Set training State and output parameter values

The last thing that needs to be done in by this MATLAB function block is to update the State for the
BCI State ST Data Store and to update the DFE tap array values.

To set the State and output values, Copy/Paste the following code into the rxBCtrainingRead MATLAB
function block:

%% Set back-channel state
if strcmpi(State,'0ff') || strcmpi(State,['0ff' 0])
BCIStateOut = 1;

elseif strcmpi(State,'Training') || strcmpi(State,['Training' 0])
BCIStateOut = 2;
elseif strcmpi(State, 'Converged') || strcmpi(State,['Converged' 0])

BCIStateOut = 3;

elseif strcmpi(State,'Failed') || strcmpi(State,['Failed' 01])
BCIStateQut = 4;

else %Error
BCIStateQut = 5;

end

%% Set output DFE values based on Training

if BCIStateOut == 2 % Training enabled
tapWeightsOut = DFEtaps(1,1:4);

else
tapWeightsOut

end

tapWeightsIn;

Save and close this MATLAB function block.

Edit the rxBCtrainingWrite MATLAB function block

The Rx_ BCI Write block is used at the end of each back-channel training cycle to calculate the
current eye metrics and report those metrics back to the Tx BCI block for analysis.

The Rx BCI Write block was set up for back-channel operation earlier in this example. Now the
MATLAB function block at the center of the Rx BCI Write block will be created. This MATLAB
function block, which we labeled rxBCtrainingWrite, will calculate the minimum eye height of the
last 127 bits and write those values to the back-channel communication file and log file. The steps
involved in this process are as follows:

1 Define the function signature.

2 Initialize parameters and set persistent variables.

3 Store a vector of voltages to be used when calculating the minimum eye height.

7-103

7 Industry Standard IBIS-AMI Models

7-104

4 At the end of each back-channel training cycle calculate the minimum eye height and write it to
the back-channel communication file.

5 Update the training state.

The following sections will walk through the code used in the rxBCtrainingWrite MATLAB function
block. In the Rx block, click on the Rx BCI Write pass-through block and type Ctrl-U to push into the
Rx BCI Write pass-through block set up earlier. Double-click on the rxBCtrainingWrite MATLAB
function block, then Copy/Paste the code described in the following sections.

Define the function signature

The function signature for the rxBCtrainingWrite block has 7 inputs and 1 output. The inputs are:

* sampleV: The voltage at the CDR sample time.

+ tapWeightsIn: The DFE tap weights array as defined in the DFECDRTapWeightsIn Data Store.
+ BCIStateIn: The back-channel state value from the RxBCIStateIn Data Store.

* sampleCounter: Count of total number of samples.

* uiCounter: Count of total number of UL

* SymbolTime: The UI (in seconds). This value is inherited from the Model Workspace and
therefore does not need to show up as a node on the MATLAB function block. To remove this node
from the MATLAB function block, the Data Scope has been set to "Parameter".

* Samplelnterval: Simulation step size (in seconds). This value is inherited from the Model
Workspace and therefore does not need to show up as a node on the MATLAB function block. To
remove this node from the MATLAB function block, the Data Scope has been set to "Parameter".

There is one output:
* BCIStateOut: The back-channel state value output to the RxBCIStateOut Data Store.

The function signature was entered earlier when initially creating the MATLAB function block and so
is already present.

Initialize parameters and variables

This section sets up the four constants needed for calculating the size of the back-channel training
cycle:
* sampBit: The number of samples in each UI.

* messagelnterval: The length (in Ul) of each back-channel training cycle. This value is currently
set to ~2 PRBS7 iterations.

» BCIwait: The delay time (in UI) before starting back-channel training. This value is currently set
to ~4 PRBS7 iterations.

* windowLength: The length of the window (in UI) used to calculate the minimum eye height. This
value is currently set to 1 PRBS7 iteration.

In addition to the constant values, this section sets up the 5 persistent variables used by this function.
Persistent variables retain their values between each call to this MATLAB function. The 5 persistent
variables are:

* Protocol: The protocol being used by this back-channel model.

* Sequence: A integer counter used to log the sequence of training events.

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

* State: The current back-channel training state.
* EyeHeight: The calculated inner eye height value (in Volts).
* vSamp: The sample voltage being reported by the CDR block.

To initialize all parameters and variables for this block, Copy/Paste the following code into the
rxBCtrainingWrite MATLAB function block:

%% Setup

sampBit = round(SymbolTime/SampleInterval);
messageInterval = 256;

BCIwait = 512;

windowLength = 127;

Calculate Samples Per Bit

o° o° o of
o° o° o° o°

% Make variables available between time steps
persistent Protocol Sequence State EyeHeight vSamp

if isempty(State)

if BCIStateIn == % Off
State = ['0Off' 0];

elseif BCIStateIn == 2 % Training
State = ['Training' 0];

elseif BCIStateIn == 3 % Converged
State = ['Converged' 0];

elseif BCIStateIn == 4 % Failed
State = ['Failed' 0];

else % Error
State = ['Error' 0];

end

end

Store vector of reported voltages

This section accumulates a rolling vector of voltages to be used in the minimum eye height
calculation. Assume that these voltages are symmetric around 0V, so the absolute value is used.

To store the report eye voltage values, Copy/Paste the following code into the rxBCtrainingWrite
MATLAB function block:

% Accumulate rolling vector of voltages for minimum eye height calculations
if isempty(vSamp)
vSamp = zeros(l, windowLength * sampBit);

end
vSamp = circshift(vSamp, 1);
vSamp(l) = abs(sampleV); % Assume symmetry and only use positive values

Calculate minimum eye height and write to file

When training is enabled, after waiting the number of Ul as defined by the constant BCIwait the
back-channel metrics are calculated at the end of each training iteration as defined by the
messagelnterval constant. First the back-channel configuration is read from the back-channel

Length (in UI) of back-channel training cycle it
Delay time (in UI) before starting training(~4 PI
Length of window (in UI) used to calculate minimi

communication file, then the inner eye height value is calculated and the results output to the back-

channel communication file and the log file.

To calculate the eye metrics and write to the communication file every back-channel cycle, Copy/Paste

the following code into the rxBCtrainingWrite MATLAB function block:

7-105

7 Industry Standard IBIS-AMI Models

7-106

%% Write current state and eye metrics at the end of each BCI block
if uiCounter > BCIwait + 2 && mod(sampleCounter, (messagelnterval * sampBit)) == 0 && BCIStatell

% Read setup used for last 16 GetWaveblocks from back-channel communication file
bciRdFile = 'BCI comm.csv';
[Protocol, ~, ~, ~, FFEtaps, Sequence, State, ~] = readBCIfile(bciRdFile);

% Calculate inner eye height from sampled voltage:
EyeHeight = min(vSamp) * 2; % 2X since using absolute value.

% Write new back-channel communication file with end of BCI-Block metrics

bciWrFile = 'BCI comm.csv';

Sequence = Sequence + 1;

writeBCIfile(bciWrFile, 'w', Protocol, numel(tapWeightsIn), numel(FFEtaps), tapWeightsIn, FFI

A\

o° o

Write to log file:

logFileName = 'BCI comm log.csv';

writeBCIhistory(logFileName, 'Rx', 'GetW', sampleCounter, BCIStateIn, numel(tapWeightsIn), ni
end

Set the training State

The last thing that needs to be done in this MATLAB function block is to update the State for the
BCI State ST Data Store.

To set the training state, Copy/Paste the following code into the rxBCtrainingRead MATLAB function
block:

%% Update State Out if State In changed

if BCIStatelIn == % Converged
State = ['Converged' 0];
elseif BCIStateIn == 4 % Failed

State = ['Failed' 0];
end

if strcmpi(State, 'Off') || strcmpi(State,['Off' 01)
BCIStateOut = 1;

elseif strcmpi(State,'Training') || strcmpi(State,['Training' 0])
BCIStateOut = 2;
elseif strcmpi(State, 'Converged') || strcmpi(State,['Converged' 0])

BCIStateOut = 3;

elseif strcmpi(State,'Failed') || strcmpi(State,['Failed' 0])
BCIStateOut = 4;

else %Error
BCIStateOut = 5;

end

Save and close this MATLAB function block.

In Simulink, type Ctrl-D to compile the model and check for errors. Resolve any errors before
proceeding.

Run the Model and Verify results

The next step is to run the model and verify that the back-channel code is operating correctly.

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

Set up simulation parameters

Before running the complete model, open the Stimulus block to set the stimulus pattern used to test
the model:

* Set PRBS to 7, so that a PRBS7 pattern will be used during simulation.

* Set the Number of symbols to 50000 to allow the back-channel training algorithm enought time
to complete.

Test proper operation of Tx and Rx models

Run the model. While the model is running, observe the time domain waveform changing as each of
the tap settings is swept. When the simulation is complete the back-channel communication file,
BCI comm.csv, should look something like:

Protocol,DDR5,

numDFEtaps, 4,

numFFEtaps, 3,
DFEtaps,0.01000,-0.00500,-0.01000, -0.00500,
FFEtaps,0.00000,0.85000,-0.15000,

Sequence, 176,

State, Converged,

EyeHeight,0.610993,

Open the back-channel communication log file, BCI comm log.csv, in a spreadsheet editor. Each row
in the log file shows the Sequence number, which model wrote to the file (Tx or Rx), the current
Sample Count, BCI State and calculated Eye Height. The last 7 columns in the log show the current
FFE and DFE taps values being simulated. Observe how the Eye Height changes as each value is
swept, and the parameter value that gives the largest Eye Height is set after each iteration. Note that
the value of FFEOQ is always computed from the values of FFE-1 and FFE1.

Generate DDR5 Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model and generates IBIS-AMI
compliant DDR5 model executables, IBIS and AMI files.

Open the SerDes IBIS-AMI Manager.
Export Models

On the Export tab in the SerDes IBIS-AMI Manager dialog box:

* Update the Tx model name to ddr5 bc_tx.
* Update the Rx model name to ddr5 bc_rx.

* Note that the Tx and Rx corner percentage is set to 10. This will scale the min/max analog
model corner values by +/-10%.

» Verify that Dual model is selected for both the Tx and the Rx AMI Model Settings. This will create
model executables that support both statistical (Init) and time domain (GetWave) analysis.

* Set the Tx model Bits to ignore value to 3 since there are three taps in the Tx FFE.

* Set the Rx model Bits to ignore value to 50000 to allow enough time for training to complete
during time domain simulations.

* Set Models to export as Both Tx and Rx so that all the files are selected to be generated (IBIS
file, AMI files and DLL files).

7-107

7 Industry Standard IBIS-AMI Models

7-108

* Set the IBIS file name to be ddr5 bc_ txrx.ibs
» Jitter can be added if desired on the AMI-Tx and AMI-Rx tabs.
* Press the Export button to generate models in the Target directory.

Update AMI files (if Desired)

The Tx and Rx AMI files generated by SerDes Toolbox are compliant to the IBIS 6.1 specification, so
all back-channel specific parameters have been placed in the Model Specific section of the file.

The BCI State ST parameter has 5 states required for complete back-channel training, however to
make these models more user-friendly the end user only really needs 2 states: "Off" and "Training".
To make this change, update the BCI State ST parameter in each AMI file as follows:

* Change (List 1234 5)to (List 1 2).

* Change (List_Tip "Off" "Training" "Converged" "Failed" "Error") to (List Tip "Off"
"Training").

* Note that this will not affect the operation of the model, only to the parameter values visible to the
user.

Test Generated IBIS-AMI Models

The DDR5 transmitter and receiver IBIS-AMI models are now complete and ready to be tested in any
industry standard AMI model simulator.

Model Limitations

When simulating with these models in an industry standard AMI model simulator, keep the following
limitations in mind:

o Itisintended that these models will be run as a "matched set" or with other AMI models that have
been generated using SerDes Toolbox.

* These models will not work with AMI models generated outside of SerDes Toolbox. Specifically,
any model that uses the IBIS standard BCI * keywords.

« BCI Protocol is not supported. These models have been hard coded to a Protocol named
"DDRx Write".

» BCI ID is not supported. These models have been hard coded to a BCI ID named "bci comm”,
which means that each simulation must be run in a separate directory to avoid filename collisions
during simulation.

* Back-channel training must be enabled on both models for training to be enabled. This is done by
setting the BCI State ST parameters to "Training".

* These models must be run with a block size of 1024 for proper operation.
* These models will operate correctly with any UI or Samples Per Bit values.
References

[1]1 IBIS 7.0 Specification, https://ibis.org/ver7.0/ver7 0.pdf.

[2] JEDEC website, https://www.jedec.org/.

https://ibis.org/ver7.0/ver7_0.pdf
https://www.jedec.org/

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

See Also
DFECDR | FFE | PassThrough | SerDes Designer | VGA

More About

. “DDRS5 Controller Transmitter/Receiver IBIS-AMI Model” on page 7-49
. “DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model” on page 7-37
. “Managing AMI Parameters” on page 6-2

External Websites

. https://www.sisoft.com/support/

7-109

https://www.sisoft.com/support/

7 Industry Standard IBIS-AMI Models

ADC IBIS-AMI Model Based on COM

7-110

This example shows how to create IEEE 802.3ck specification ADC-based transmitter and receiver
IBIS-AMI models using library blocks in the SerDes Toolbox™ library and custom blocks to model a
time-agnostic ADC. The generated models conform to the IBIS-AMI standard. The virtual sampling
node, which exists in slicer-based SerDes systems, but does not exist in ADC-based SerDes systems,
is emulated to allow for virtual eye diagram generation in the Simulink® and IBIS-AMI simulators for
evaluating the channel.

SerDes IBIS-AMI Model Setup Using MATLAB Script

This example uses a MATLAB® script to first construct a SerDes System representing the transmitter
and receiver of an ADC architecture and then export to a SerDes Simulink model. Type this command
in the MATLAB command window to run the script:

buildSerDesADC

A SerDes System is configured with the following attributes before being exported to Simulink. Note
that custom blocks will function as pass-throughs until the Simulink customizations discussed later in
the example are applied.

Configuration Setup

* Symbol Time is set to 18.8235ps, since the maximum allowable 802.3ck operating data-rate is
106.25Gb/s.

* Target BER is set to le-4.

* Samples per Symbol is set to 32.

* Modulation is set to PAM4.

* Signaling is set to Differential.

Transmitter Model Setup

» The Tx FFE block is set up for 3 pre-tap and 1 post-tap by including 5 tap weights.

* The Tx VGA block is used to control the launch amplitude.

* The Tx AnalogOut model is set up so that Voltage is 1V, Rise time is 6.161ps, R (output
resistance) is 50 Ohms, and C (capacitance) is 5fF according to the 802.3ck specification.

Channel Model Setup

* Channel loss is set to 15dB.
+ Target Frequency is set to the Nyquist frequency.
+ Differential impedance is kept at default 100 Ohms.

Receiver Model Setup

* The Rx AnalogIn model is set up so that R (input resistance) is 50 Ohms and C (capacitance) is 5
fF according to the 802.3ck specification.

* The Noise custom block injects Gaussian noise to time domain waveform.

* A cascade of 3 Rx CTLE blocks is set up for 7, 21, and 1 configurations respectively. The GPZ
(Gain Pole Zero) matrix data for each is derived from the transfer function given in the 802.3ck
behavioral CTLE specification.

ADC IBIS-AMI Model Based on COM

The Rx VGA custom block applies adapted gain.
The Saturating Amplifier block applies memoryless non-linearity.
The ADC custom block quantizes the time domain signal.

The Rx FFE custom has 21 taps (3-pre and 17-postcursor taps) whose weights will be
automatically computed during the Rx global adaptation.

The Rx DFECDR block is set up for one DFE taps. The DFE tap is limited to be +/- 0.5V amplitude.

ADC-Based SerDes Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the script and customizes it as
required for an ADC-based SerDes in Simulink.

Review Simulink Model Setup

The SerDes System exported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel

and Rx blocks.
Caonfiguration
Slirmulus Cut | wava_in Tx e _pul = In Anahog Channel Cut P aave_in Fx WaE_Cut >
Eye Diagrarm

Push inside the Tx subsystem.

Init

SerDes IBIS-AMI Manager '

(1 y——»{waveln FFE WaveOutf———{Waveln VGA WaveOut—— {1)

Waveln

WaveOut

FFE TX_AMP

Push inside the Rx subsystem.

7-111

7 Industry Standard IBIS-AMI Models

Init

SerDes |BIS-AMI Manager

Wavain

(1 30—

7-112

Waveln Pass-Through WaveOut

Wavaln CTLE WaveOut

Wavaln CTLE WaveOut Waveln CTLE WaveQut Waveln Pass-Through WaveOut

Noisa

MBZ

CTLE NF VGA

|

Wavaln WaveOut

Amplifier

Wavaln Pass-Through WaveOut

Wavaln Pass-Through WaveOut Waveln DFECDR WaveOut

WaveOut

Sathmp

ADC

RX_FFE DFECDR

Customize the Model for ADC-Based SerDes

The model exported from the SerDes App needs to be first customized to represent an ADC-based

SerDes Rx by customizing additional Rx blocks and modifying the Rx Init block code.

Configure Input Referred Rx Noise Block

Noise in the Rx subsystem can be modelled at the output, or at the input. An input referred noise
source is shaped by the subsequent equalization stages (CTLE & FFE), and hence better reflects the

does not capture how changing the settings on the CTLE and FFE impact noise.

* Descend into the Pass-Through block named Noise by clicking on the down arrow on block.

* Point the existing system object to the Noise.m system object in the example directory. See
“Implement Custom CTLE in SerDes Toolbox PassThrough Block” on page 5-28.

Pass Through

outl—»(7)

PassThrough

Block Parameters: PassThrough x
MATLAB System

Implement block using a System object. Specify the
class name.

System object name: MNoise |v 3

Cancel

Help

* In the system object mask, configure Symbol Time, Sample Interval, and Modulation with the

system variables.

how noise is shaped by the real system. On the other hand, output referred noise is not shaped, and

ADC IBIS-AMI Model Based on COM

Block Parameters: PassThrough >
Noise

Gaussian Noise Injection

Source code

Farameters

[] ModePort

Mode (0: Off, 1: On): 1

NoisePSDPort

Input Waveform Type: Sample -

Symbaol time (s): | SymbolTime | :

Modulation (2: NRZ, 3:PAM3, 4: PAM4): | Modulation IE

Sample interval (s): |Sample1ntenral | :

Simulate using: Code generation -

Cancel Help Apply

* Create an IBIS-AMI parameter in the IBIS-AMI Manager for the Noise block named NoisePSD
using the pictured attributes. The value 8.2e-9 comes from the COM standard. See “Managing
AMI Parameters” on page 6-2.

7-113

7 Industry Standard IBIS-AMI Models

4 SerDes IBIS-AMI Manager - Add/Edit AMI Parameter — O >

Parent Node | MNoise

Farameter name | MoisePSD |

Current value | a.2e-09 |

Description

Input referred noise from integrated power spectral density (PSD) in units
of VA2/GHz

Usage |In v |
Type | Float v |
Format | Value v |
| |Hidden | oK || Cancel |

* Connect the generated constant block to Noise input port.

- I—D waveln
Noise \yaveOut

In —» NoisePSD

Out

PassThrough

NoiseParameter.NoisePSD

7-114

NoisePSD

ADC IBIS-AMI Model Based on COM

Configure VGA Block

Descend into the Pass-Through block named VGA.

Point the existing system object to the serdes.VGA system object included in SerDes Toolbox.
In the system object mask, turn off the Mode Port to force the block to be on.

Block Parameters: PassThrough
VGA

x

Variable Gain Amplifier (VGA)
Source code

Main

] ModePort

Mode (0: Off, 1: On): |1
GainPort

Simulate using: | Code generation

Cancel Help Apply

Create an IBIS-AMI parameter in the IBIS-AMI Manager for the VGA block named Gain using the
pictured attributes.

7-115

7 Industry Standard IBIS-AMI Models

4 SerDes IBIS-AMI Manager - Add/Edit AMI Parameter — O >

Parent Node | VGA

Farameter name | Gain |

Current value | 1 |

Description

VGA gain value is determined by Init adaptation

Usage |InOut v |
Type | Float v |
Format | Value v |
| |Hidden | oK || Cancel |

* Connect generated data store read to Gain input port. Delete data store write as it will be unused
because the value is only updated in Init and not time domain.

7-116

ADC IBIS-AMI Model Based on COM

In

In VGA out Out
— Gain

PassThrough

VGASignal.Gain

Gain read

VGA Adaptation

VGA adaptation is straightforward, the required gain is calculated in Init as the ratio of a target pulse
amplitude versus the maximum peak value of the input pulse response. Yet, the required VGA gain
may be different for different CTLE settings, hence the VGA gain will need to be evaluated at each
iteration of the general algorithm described previously.

Configure ADC Block

The ADC model used is a time-agnostic ADC, meaning that each point in the simulation is quantized,
rather than just at the sampling instant. However, the DFE and clock recovery will still only use ADC
samples at the sampling instant. A time-agnostic ADC allows for the generation of an equivalent
waveform as seen at the DFE summing node: allowing for the construction of a signal eye diagram
with a representative height and width.

* Descend into the Pass-Through block named ADC
* Point the existing system object to the ADC.m system object in the example directory.

* In the system object mask, configure Symbol Time, Sample Interval, and Modulation with the
system variables.

7-117

7 Industry Standard IBIS-AMI Models

wa\reln ADC waveOut —h'

In Ot

—
PassThrough

Configure Rx FFE

Block Parameters: PassThrough

ADC

Time agnostic ADC

Source code

Parameters

] ModePort (0: Off, 1: On)

Mode (0: OFF, 1: On): 1

Dynamic range (V, peak): |D.E-
Resolution (bits): |6

Input Waveform Type: Sample
Symbaol time (s): | SymbolTime

Modulation (2: NRZ, 3:PAM3, 4: PAM4): |Mc|-dulaﬁon

Sample interval (s): |SampIeInten.raI
Simulate using: |Code generation
Cancel Help Apply

* Descend into the Pass-Through block named Rx FFE
* Point the existing system object to the serdes.FFE system object included in SerDes Toolbox.

* In the main tab of the system object mask, turn off the Mode Port and turn off Normalize Taps. In
the advanced tab, configure Symbol Time and Sample Interval with the system variables.

Block Pararmeters: PassThrough
FFE

Feed forward equailzer
Source code

Main Advanced
(] ModePort

x Block Parameters: PassThrough
FFE

Feed forward equailzer
Source code

Main Advanced

Symbol time (s): | SymbolTime

Mode (0:0ff, 1:Fixed): |1

| i | sample interval (s): |Samplelnter\ral

TapWeightsPort
] Normalize taps

Visualize Response

Simulate using: |Code generation

Cancel Help

Input waveform type: |Sample

Apply

Cancel Help

Apply

7-118

ADC IBIS-AMI Model Based on COM

* Create a tap structure in the IBIS-AMI Manager for the Rx_FFE block with 3 pre-cursor taps, 17
post cursor taps, and the pictured attributes.

[zeros(1,3) 1 zeros(1,17)]
4. Add Tap Structure — O >

Tap weights | [zeros(1,3) 1 zeros(1,17]]
Min range | -1
Max range |1
v | Has main tap
Usage |E|

Hidden 0K Cancel

* Connect generated data store read to Tap Weights input port. Delete data store write as it will be
unused.

In
FFE out

In —» TapWeights Out

PassThrough

RX_FFESignal. TapWeights

TapWeights read

FFE Adaptation

The Rx FFE operates on ADC sampled data, rather than on a continuous waveform. However, during
statistical adaptation, it is assumed that all of the waveform points, even in between data samples,
are available. The Rx FFE is only adapted in the custom user Init code; adaptation is assisted by the
adaptFFE function provided. The Rx FFE adaptation goal is to drive the output pulse response, given
an input pulse response, such that the pre and post cursor data samples are driven to zero. This does
not mean that the pulse response will be zero other than at the cursor point. Rather, much like a sync
waveform, the ISI is only driven to zero at the data sample points.

As the Rx FFE operates on sampled data, the first step in the adaptation process, in adaptFFE, is to
assume a data sampling phase for the input pulse response. The approach used is greedy to assume
that we can force sampling so that the cursor lands on the peak of the incoming pulse response.

As the Rx FFE, in the Rx subsystem, is followed by a 1-tap DFE, the Rx FFE does not need to zero
force the 1st post cursor. Rather, the Rx FFE needs to ensure that the 1st post-cursor falls within the

7-119

7 Industry Standard IBIS-AMI Models

equalization range of the 1-tap DFE. Note, that if a post Rx DFE is not used, then the goal would be to
zero-force all pre- and post-cursor ISI.

Given the now sampled input pulse response, the goal is to find a filter response that drives the pre-
and post-cursor data samples to zero, or in the case of the 1st post cursor sample into the range of
the DFE. This optimization problem is very closely related to solving a set of linear equations, where
we need to find a matrix inverse. This matrix that needs to be inverted is a matrix made up of the
circularly shifted input sampled pulse response. This inverted matrix then multiplied by the desired
output target pulse response: [0, 0, 0, 1, bmax, 0, 0...] for the case of a 3-tap precursor Rx FFE,
where the 1 denotes the cursor position and bmax denotes the maximum range of the DFE. The
required Rx FFE FIR filter coefficients are the product of the inverted, circularly shifted input pulse-
response matrix and the desired output pulse response.

DFECDR Adaptation

DFECDR adaptation follows Rx FFE adaptation. The DFECDR is the standard block in the SerDes
toolbox, please refer to the online documentation for the DFECDR block.

This example uses an Alexander (bang-bang) phase detector, rather than a baud-rate phase detector
that is typically used in ADC-based SerDes systems. This modelling choice simplifies the example, as
a baud-rate phase detector would interact with the adaptation convergence. The ADC-based SerDes
systems need to contend with the interaction between CDR lock point and Rx FFE & DFE adaptation.

Customize Rx Subsystem Init Code Block

In this example, the Rx subsystem adaptation is performed in the statistical domain: involving the co-
adaptation of the CTLE, FFE, and DFE to achieve the best possible BER given the channel and Tx
FFE settings used. The optimized settings for CTLE and FFE will remain fixed during time-domain
simulations, while the DFE and CDR continue to adapt during the time-domain simulation.

G

Block Parameters: Init >
= &l Subsystem (mask)
Subsystem containing blocks to enable Init processing and code
generation
Tools
£l
Init Refresh Init Show Init

| SerDes |IBIS-AMI Manager '

Cancel Help Apply

(I)—P Waveln Pass-Through WaveOut ———® Waveln CTLE WaveOut ———

Waveln

7-120

Noise MBZ

ADC IBIS-AMI Model Based on COM

132

142

Modify the custom user code area of Init with the code provided with the example. See “Globally
Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes Performance” on page
4-10.

* Click Refresh Init on the Init mask dialog to update code based on previous steps.
* Click Show Init on the Init mask dialog to open the Init code.
* Copy the code in adcInitCustomUserCode.m within the example directory.

edit adcInitCustomUserCode.m

» Paste the copied code just before the end of the custom user code area. Ensure that the AMI
parameters at the top of the custom user area are retained. Do not modify code beyond the end of
the custom user area.

DFECCRInit.Count = l&;

DFECDRInit.ClockStep = 0.007&;

DFECDRInit.Sensitivity = 05

%% BEGIN: Custom user code area (retained when 'Befresh Init' button is pressed)
NoiseInit.NoiseP5D = NoiseParameter.NoisePSD; % User added AMI parameter
BX FFEInit.TapWeights = BX FFEParameter.TapWeights; % User added AMI parameter from SerDes IBIS-BMI Manager
RE_FFETapWeights = BRE_FFEParameter.TapWeights; % User added AMI parameter from SerDes IBIS-AMI Manager
VGAGain = VGAParameter.Gainy % User added AMI parameter from SerDes IBIS-AMI Manager

from SerDes IBIS-AMI Manager

[SI

VGAInit.Gain = VGAParameter.Gain; % User added BEMI parameter £ es IBIS-AMI Manager

% SerDes ADC Init Custom User Code

3 Copyright 2020 The MathWorks, Inc.

% Prepare required parameters

SamplesPerSymbol = round({SymbolTime / SampleInterwval):
I5ILimit = 0.001;
NoiseBW = 100e5;

I5I igneore limit, fraction of cursor

o ol

Noise integration BW, H=z

% Set mid-band zero (MBZ) adaptation bounds
iiMBZ = 1; %Index
if MBZInit.Mode =

$If adapt mode

Statistical Adaptation Algorithm

The statistical adaptation algorithm processes the impulse response though each of the Rx subsystem
blocks, and measures the resulting impulse response figure of merit. As this is an ADC-based system,
the figure of merit used is signal-to-noise (SNR), where the noise term also includes residual pre- and
post-cursor ISI.

In general, statistical Rx adaptation will proceed as follows:

* An initial CTLE setting is selected

* A VGA setting is chosen such that the pulse amplitude falls within target bounds

* The Rx FFE is automatically adjusted so that ISI at data sample points is minimized.
* The DFE is adapted to remove post-cursor ISI.

* SNR at data sample points is evaluated.

» Steps above are repeated for each possible CTLE setting, keeping track of SNR values for each
setting. The setting with the highest SNR is chosen as the global adaptation point.

7-121

7 Industry Standard IBIS-AMI Models

Run The Simulink Model

* Visit the Stimulus block mask dialog and change number of symbols to 4000.

» Visit the export tab of the IBIS-AMI Manager and update the Rx ignore bits to 2000. This and the
previous modification will ensure that the time domain adaptation has ample time to converge. A
larger number of symbols and ignore time will yield more realistic results.

* Run the model to simulate the ADC-based SerDes system.

4. Eye Diagram

File Tools VWiew Help

@- 85 0r® - a-E H- |

i)
=]
=1

=
=
=

L
e

Ready T=7.53e-08

7-122

ADC IBIS-AMI Model Based on COM

4 Init Statistical and Time Domain Analysis Results

Insert Tools

O& k[E

WView

=

el

File Edit
D& de
Stat Analysis

Pulse Response

0.5 T T
Unequalized primary
0.4} Unequalized agr1
Unequalized agr2
0.3} Equalized primary
Equalized agri
E 0.2} Equalized agr2
0.1t
D -
01 : : : :
0 0.5 1 1.5 2 25
[s] x1078
Statistical Eye
0.3 . . 10°
0.2
0.1
= 0 107
-0.1
0.2
_D3| i i i | ,.ID-'I:I
0 5 10 15
[Ps]
Time Domain Analysis
Time Domain Eye
0.4 . . 100
- Rl
107
10

15

5

Desktop Window Help

=

[Probability]

[Probability]

— O >
-]
Waveform Derived from Pulse Response
Unequalized primary
0.31 | Unequalized agr1
0.2 ! | | Unequalized agr2
l ! i Equalized primary
01r Equalized agr1
l m | Equalized agr2
*di I’ | W
0.1 I
| l "
22
0.3 —
0 0.5
Statistical Metric Data
Eve Height Upper (V) 0.08a87
Eve Height Center (V) 0.0887
Eve Height Lower (V) 0.02a87
Eye Width Upper (ps) 62189
Eve Width Center (ps) 68750
Eve Width Lower (ps) 6.2189
Eve Area Upper (W=.. 0.35975
Eye Area Center [W®.. 0.3579
Eve Area Lower (W*... 0.3975
COM 12.3823
WVEC 23725
Eye Linearity 09977
Time Domain Metric Data
Eve Height Upper (V) 0.0645
Eve Height Center (') 0.0701
Eve Height Lower (V) 0.0645
Eye Width Upper (ps) 6.111%
Eve Width Center (ps) 5.9254
Eve Width Lower (ps) 6.5487
Eve Area Upper (\W*pzg) 0.2046
Eve Area Center (W*.. 0.3217
Eve Area Lower (W*... 0.2962
COM 76758
WVEC 4 36
Eye Linearity 0.9452
Winimum BER 5.0000e-04 7-12

7 Industry Standard IBIS-AMI Models

7-124

Update the ADC Quantization

In the example the ADC quantization is set to 6b, by default. Try changing the ADC quantization to a
lower amount, observe how the time-domain eye shape is affected by reduced ADC precision.

Generate ADC-Based SerDes IBIS-AMI Model

The final part of this example takes the customized ADC-based SerDes Simulink model and then
generates an IBIS-AMI compliant model: including model executables, IBIS and AMI files.

The current IBIS AMI standard does not have native support for ADC-based SerDes. The current
standard is written for slicer-based SerDes, which contain a signal node wherein the equalized signal
waveform is observed. In a slicer-based SerDes this node exists inside the DFE, right before the
decision sampler. A continuous analog waveform is observable at that node, which includes the effect
of all the upstream equalizers (such as CTLE) and the equalization due to DFE, as tap weighted and
fed back prior decisions. Such a summing node does not exist in an ADC-based SerDes, due to the
ADC in the system. In a real ADC-based SerDes system the ADC proves a vertical slice though the eye
at the sampling instant. To emulate a virtual node, a time-agnostic ADC is used. This ADC quantizes
each point in the incoming analog waveform at the simulation time-step rate: i.e. 1/fB/SPS, where
SPS is the number of samples per symbol, and fB is the baud-rate. The Rx FFE also processes the
input signal as a continuous waveform, rather than as samples. However, the Rx FFE applies a single
tap values for SPS-simulation time-steps. The DFE is the stock DFE from the SerDes Toolbox and is
written for slicer based SerDes. This signal chain allows for the signal integrity simulator to be able
to observe a virtual eye in an ADC-based system.

Export IBIS-AMI Models

Open the Export tab in the SerDes IBIS-AMI manager dialog box.

* Verify that Dual model is selected for both the Tx and the Rx AMI Model Settings. This will create
model executables that support both statistical (Init) and time domain (GetWave) analysis.

* Set the Tx model Bits to ignore value to 5 since there are three taps in the Tx FFE.

* Set the Rx model Bits to ignore value to 20,000 to allow sufficient time for the Rx DFE taps to
settle during time domain simulations.

* Set Models to export as Both Tx and Rx so that all the files are selected to be generated (IBIS
file, AMI files and DLL files).

* Press the Export button to generate models in the Target directory.

See Also
CTLE | DFECDR | FFE | SaturatingAmplifier | VGA

More About

. “Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes
Performance” on page 4-10

. “Implement Custom CTLE in SerDes Toolbox PassThrough Block” on page 5-28
. “Managing AMI Parameters” on page 6-2

External Websites
. Best Practices for Modeling PAM4 SerDes Systems and Improving IBIS-AMI Correlation

https://www.mathworks.com/videos/best-practices-for-modeling-serdes-systems-and-improving-ibis-ami-correlation-1584081394974.html

ADC IBIS-AMI Model Based on COM

https://www.sisoft.com/support/

7-125

https://www.sisoft.com/support/

	Design and Simulate SerDes System Topics
	Fundamentals of SerDes Systems
	Clock and Data Recovery in SerDes System
	Phase Detector
	Recovering Clock Signal

	Analog Channel Loss in SerDes System
	Loss Model from Channel Loss Metric
	Loss Model from Impulse Response
	Introducing Cross Talk

	Manage IBIS-AMI Parameters
	Contents of IBIS File
	Contents of AMI File
	Customize AMI Parameters
	Debug AMI Files in EDA

	Statistical Analysis in SerDes Systems
	Init Subsystem Workflow
	SerDes System Using Init Subsystem
	PAM4 Thresholds

	Jitter Analysis in SerDes Systems
	Linux Version Compatibilities

	Customize SerDes Systems Topics
	Customize SerDes System in MATLAB

	Create and Customize IBIS-AMI Models Topics
	SiSoft Link
	SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

	Design and Simulate SerDes Systems Examples
	Find Zeros, Poles, and Gains for CTLE from Transfer Function
	Convert Scattering Parameter to Impulse Response for SerDes System
	Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes Performance
	Globally Adapt Receiver Components in Time Domain
	Model Clock Recovery Loops in SerDes Toolbox

	Customize SerDes Systems
	Customizing SerDes Toolbox Datapath Control Signals
	Customizing Datapath Building Blocks
	Implement Custom CTLE in SerDes Toolbox PassThrough Block
	Step Response Based CTLE

	Customize IBIS-AMI Models
	Managing AMI Parameters
	Design IBIS-AMI Models to Support Clock Forwarding

	Industry Standard IBIS-AMI Models
	PCIe4 Transmitter/Receiver IBIS-AMI Model
	PCIe5 Transmitter/Receiver IBIS-AMI Model
	DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model
	DDR5 Controller Transmitter/Receiver IBIS-AMI Model
	CEI-56G-LR Transmitter/Receiver IBIS-AMI Model
	USB3.1 Transmitter/Receiver IBIS-AMI Model
	Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training
	ADC IBIS-AMI Model Based on COM

